Advertisement
calculus of variations and optimal control theory: Calculus of Variations and Optimal Control Theory Daniel Liberzon, 2012 This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control |
calculus of variations and optimal control theory: A Primer on the Calculus of Variations and Optimal Control Theory Mike Mesterton-Gibbons, 2009 The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory. |
calculus of variations and optimal control theory: The Calculus of Variations and Optimal Control George Leitmann, 2013-06-29 When the Tyrian princess Dido landed on the North African shore of the Mediterranean sea she was welcomed by a local chieftain. He offered her all the land that she could enclose between the shoreline and a rope of knotted cowhide. While the legend does not tell us, we may assume that Princess Dido arrived at the correct solution by stretching the rope into the shape of a circular arc and thereby maximized the area of the land upon which she was to found Carthage. This story of the founding of Carthage is apocryphal. Nonetheless it is probably the first account of a problem of the kind that inspired an entire mathematical discipline, the calculus of variations and its extensions such as the theory of optimal control. This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources; however, those most useful to me have been the books of Oskar Bolza and of George M. Ewing. Part II is devoted to the elementary aspects of the modern extension of the calculus of variations, the theory of optimal control of dynamical systems. |
calculus of variations and optimal control theory: Functional Analysis, Calculus of Variations and Optimal Control Francis Clarke, 2013-02-06 Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields. |
calculus of variations and optimal control theory: Classical Mechanics with Calculus of Variations and Optimal Control Mark Levi, 2014-03-07 This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the tennis racket paradox; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book. |
calculus of variations and optimal control theory: Optimal Control and the Calculus of Variations Enid R. Pinch, 1995 A paperback edition of this successful textbook for final year undergraduate mathematicians and control engineering students, this book contains exercises and many worked examples, with complete solutions and hints making it ideal not only as a class textbook but also for individual study. Theintorduction to optimal control begins by considering the problem of minimizing a function of many variables, before moving on to the main subject: the optimal control of systems governed by ordinary differential equations. |
calculus of variations and optimal control theory: Calculus of Variations Charles R. MacCluer, 2013-05-20 First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition. |
calculus of variations and optimal control theory: Turnpike Properties in the Calculus of Variations and Optimal Control Alexander J. Zaslavski, 2006-01-27 This book is devoted to the recent progress on the turnpike theory. The turnpike property was discovered by Paul A. Samuelson, who applied it to problems in mathematical economics in 1949. These properties were studied for optimal trajectories of models of economic dynamics determined by convex processes. In this monograph the author, a leading expert in modern turnpike theory, presents a number of results concerning the turnpike properties in the calculus of variations and optimal control which were obtained in the last ten years. These results show that the turnpike properties form a general phenomenon which holds for various classes of variational problems and optimal control problems. The book should help to correct the misapprehension that turnpike properties are only special features of some narrow classes of convex problems of mathematical economics. Audience This book is intended for mathematicians interested in optimal control, calculus of variations, game theory and mathematical economics. |
calculus of variations and optimal control theory: Optimal Control Theory Donald E. Kirk, 2012-04-26 Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition. |
calculus of variations and optimal control theory: Variational Calculus and Optimal Control John L. Troutman, 2012-12-06 An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science. |
calculus of variations and optimal control theory: Variational Calculus with Elementary Convexity J.L. Troutman, 2012-12-06 The calculus of variations, whose origins can be traced to the works of Aristotle and Zenodoros, is now Ii vast repository supplying fundamental tools of exploration not only to the mathematician, but-as evidenced by current literature-also to those in most branches of science in which mathematics is applied. (Indeed, the macroscopic statements afforded by variational principles may provide the only valid mathematical formulation of many physical laws. ) As such, it retains the spirit of natural philosophy common to most mathematical investigations prior to this century. How ever, it is a discipline in which a single symbol (b) has at times been assigned almost mystical powers of operation and discernment, not readily subsumed into the formal structures of modern mathematics. And it is a field for which it is generally supposed that most questions motivating interest in the subject will probably not be answerable at the introductory level of their formulation. In earlier articles,1,2 it was shown through several examples that a complete characterization of the solution of optimization problems may be available by elementary methods, and it is the purpose of this work to explore further the convexity which underlay these individual successes in the context of a full introductory treatment of the theory of the variational calculus. The required convexity is that determined through Gateaux variations, which can be defined in any real linear space and which provide an unambiguous foundation for the theory. |
calculus of variations and optimal control theory: Calculus of Variations and Optimal Control Theory Daniel Liberzon, 2011-12-19 This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control |
calculus of variations and optimal control theory: Introduction to the Calculus of Variations Hans Sagan, 2012-04-26 Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition. |
calculus of variations and optimal control theory: Control Theory and Optimization I M.I. Zelikin, 2013-03-14 The only monograph on the topic, this book concerns geometric methods in the theory of differential equations with quadratic right-hand sides, closely related to the calculus of variations and optimal control theory. Based on the author’s lectures, the book is addressed to undergraduate and graduate students, and scientific researchers. |
calculus of variations and optimal control theory: The Calculus of Variations and Functional Analysis L. P. Lebedev, Michael J. Cloud, 2003 This volume is aimed at those who are concerned about Chinese medicine - how it works, what its current state is and, most important, how to make full use of it. The audience therefore includes clinicians who want to serve their patients better and patients who are eager to supplement their own conventional treatment. The authors of the book belong to three different fields, modern medicine, Chinese medicine and pharmacology. They provide information from their areas of expertise and concern, attempting to make it comprehensive for users. The approach is macroscopic and philosophical; readers convinced of the philosophy are to seek specific assistance. |
calculus of variations and optimal control theory: Introduction To The Calculus of Variations And Its Applications, Second Edition Frederic Wan, 1995-01-01 This comprehensive text provides all information necessary for an introductory course on the calculus of variations and optimal control theory. Following a thorough discussion of the basic problem, including sufficient conditions for optimality, the theory and techniques are extended to problems with a free end point, a free boundary, auxiliary and inequality constraints, leading to a study of optimal control theory. |
calculus of variations and optimal control theory: Optimal Control Theory and Static Optimization in Economics Daniel Léonard, Ngo van Long, 1992-01-31 Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required. |
calculus of variations and optimal control theory: Constrained Optimization In The Calculus Of Variations and Optimal Control Theory J Gregory, 2018-01-18 The major purpose of this book is to present the theoretical ideas and the analytical and numerical methods to enable the reader to understand and efficiently solve these important optimizational problems.The first half of this book should serve as the major component of a classical one or two semester course in the calculus of variations and optimal control theory. The second half of the book will describe the current research of the authors which is directed to solving these problems numerically. In particular, we present new reformulations of constrained problems which leads to unconstrained problems in the calculus of variations and new general, accurate and efficient numerical methods to solve the reformulated problems. We believe that these new methods will allow the reader to solve important problems. |
calculus of variations and optimal control theory: Introduction to the Calculus of Variations and Control with Modern Applications John A. Burns, 2013-08-28 Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a |
calculus of variations and optimal control theory: Optimal Control Systems D. Subbaram Naidu, 2018-10-03 The theory of optimal control systems has grown and flourished since the 1960's. Many texts, written on varying levels of sophistication, have been published on the subject. Yet even those purportedly designed for beginners in the field are often riddled with complex theorems, and many treatments fail to include topics that are essential to a thorough grounding in the various aspects of and approaches to optimal control. Optimal Control Systems provides a comprehensive but accessible treatment of the subject with just the right degree of mathematical rigor to be complete but practical. It provides a solid bridge between traditional optimization using the calculus of variations and what is called modern optimal control. It also treats both continuous-time and discrete-time optimal control systems, giving students a firm grasp on both methods. Among this book's most outstanding features is a summary table that accompanies each topic or problem and includes a statement of the problem with a step-by-step solution. Students will also gain valuable experience in using industry-standard MATLAB and SIMULINK software, including the Control System and Symbolic Math Toolboxes. Diverse applications across fields from power engineering to medicine make a foundation in optimal control systems an essential part of an engineer's background. This clear, streamlined presentation is ideal for a graduate level course on control systems and as a quick reference for working engineers. |
calculus of variations and optimal control theory: Global Methods in Optimal Control Theory Vadim Krotov, 1995-10-13 This work describes all basic equaitons and inequalities that form the necessary and sufficient optimality conditions of variational calculus and the theory of optimal control. Subjects addressed include developments in the investigation of optimality conditions, new classes of solutions, analytical and computation methods, and applications. |
calculus of variations and optimal control theory: Optimal Control and the Calculus of Variations Enid R. Pinch, 1993-03-18 A paperback edition of this successful textbook for final year undergraduate mathematicians and control engineering students, this book contains exercises and many worked examples, with complete solutions and hints making it ideal not only as a class textbook but also for individual study. The intorduction to optimal control begins by considering the problem of minimizing a function of many variables, before moving on to the main subject: the optimal control of systems governed by ordinary differential equations. |
calculus of variations and optimal control theory: The Calculus of Variations and Optimal Control George Leitmann, 1981-05-31 This book is intended to present an introductory treatment of the calculus of variations in Part I and of optimal control theory in Part II. The discussion in Part I is restricted to the simplest problem of the calculus of variations. The topic is entirely classical; all of the basic theory had been developed before the turn of the century. Consequently the material comes from many sources. |
calculus of variations and optimal control theory: Introduction to Optimal Control Theory Jack Macki, Aaron Strauss, 2012-12-06 This monograph is an introduction to optimal control theory for systems governed by vector ordinary differential equations. It is not intended as a state-of-the-art handbook for researchers. We have tried to keep two types of reader in mind: (1) mathematicians, graduate students, and advanced undergraduates in mathematics who want a concise introduction to a field which contains nontrivial interesting applications of mathematics (for example, weak convergence, convexity, and the theory of ordinary differential equations); (2) economists, applied scientists, and engineers who want to understand some of the mathematical foundations. of optimal control theory. In general, we have emphasized motivation and explanation, avoiding the definition-axiom-theorem-proof approach. We make use of a large number of examples, especially one simple canonical example which we carry through the entire book. In proving theorems, we often just prove the simplest case, then state the more general results which can be proved. Many of the more difficult topics are discussed in the Notes sections at the end of chapters and several major proofs are in the Appendices. We feel that a solid understanding of basic facts is best attained by at first avoiding excessive generality. We have not tried to give an exhaustive list of references, preferring to refer the reader to existing books or papers with extensive bibliographies. References are given by author's name and the year of publication, e.g., Waltman [1974]. |
calculus of variations and optimal control theory: Calculus of Variations Hansjörg Kielhöfer, 2018-01-25 This clear and concise textbook provides a rigorous introduction to the calculus of variations, depending on functions of one variable and their first derivatives. It is based on a translation of a German edition of the book Variationsrechnung (Vieweg+Teubner Verlag, 2010), translated and updated by the author himself. Topics include: the Euler-Lagrange equation for one-dimensional variational problems, with and without constraints, as well as an introduction to the direct methods. The book targets students who have a solid background in calculus and linear algebra, not necessarily in functional analysis. Some advanced mathematical tools, possibly not familiar to the reader, are given along with proofs in the appendix. Numerous figures, advanced problems and proofs, examples, and exercises with solutions accompany the book, making it suitable for self-study. The book will be particularly useful for beginning graduate students from the physical, engineering, and mathematical sciences with a rigorous theoretical background. |
calculus of variations and optimal control theory: Calculus of Variations I Mariano Giaquinta, Stefan Hildebrandt, 2013-03-09 This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems—such as those of geometric optics—of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book. |
calculus of variations and optimal control theory: Nonlinear Optimal Control Theory Leonard David Berkovitz, Negash G. Medhin, 2012-08-25 Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games. |
calculus of variations and optimal control theory: Lectures on the Calculus of Variations and Optimal Control Theory L. C. Young, 2024-10-30 This book is divided into two parts. The first addresses the simpler variational problems in parametric and nonparametric form. The second covers extensions to optimal control theory. The author opens with the study of three classical problems whose solutions led to the theory of calculus of variations. They are the problem of geodesics, the brachistochrone, and the minimal surface of revolution. He gives a detailed discussion of the Hamilton-Jacobi theory, both in the parametric and nonparametric forms. This leads to the development of sufficiency theories describing properties of minimizing extremal arcs. Next, the author addresses existence theorems. He first develops Hilbert's basic existence theorem for parametric problems and studies some of its consequences. Finally, he develops the theory of generalized curves and ?automatic? existence theorems. In the second part of the book, the author discusses optimal control problems. He notes that originally these problems were formulated as problems of Lagrange and Mayer in terms of differential constraints. In the control formulation, these constraints are expressed in a more convenient form in terms of control functions. After pointing out the new phenomenon that may arise, namely, the lack of controllability, the author develops the maximum principle and illustrates this principle by standard examples that show the switching phenomena that may occur. He extends the theory of geodesic coverings to optimal control problems. Finally, he extends the problem to generalized optimal control problems and obtains the corresponding existence theorems. |
calculus of variations and optimal control theory: Mathematical Optimization Techniques Richard Bellman, 2022-05-27 This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1963. |
calculus of variations and optimal control theory: The Inverse Problem of the Calculus of Variations Dmitry V. Zenkov, 2015-10-15 The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban). |
calculus of variations and optimal control theory: Primer on Optimal Control Theory Jason L. Speyer, David H. Jacobson, 2010-05-13 A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice. |
calculus of variations and optimal control theory: Infinite Dimensional Optimization and Control Theory Hector O. Fattorini, 1999-03-28 Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming. |
calculus of variations and optimal control theory: Dynamic Programming and the Calculus of Variations Dreyfus, 1965-01-01 Dynamic Programming and the Calculus of Variations |
calculus of variations and optimal control theory: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control Piermarco Cannarsa, Carlo Sinestrari, 2004-09-14 * A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems |
calculus of variations and optimal control theory: Mathematical Control Theory Eduardo D. Sontag, 2013-11-21 Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls. |
calculus of variations and optimal control theory: Optimal Control Theory with Economic Applications A. Seierstad, K. Sydsæter, 1987-02 This book serves not only as an introduction, but also as an advanced text and reference source in the field of deterministic optimal control systems governed by ordinary differential equations. It also includes an introduction to the classical calculus of variations. An important feature of the book is the inclusion of a large number of examples, in which the theory is applied to a wide variety of economics problems. The presentation of simple models helps illuminate pertinent qualitative and analytic points, useful when confronted with a more complex reality. These models cover: economic growth in both open and closed economies, exploitation of (non-) renewable resources, pollution control, behaviour of firms, and differential games. A great emphasis on precision pervades the book, setting it apart from the bulk of literature in this area. The rigorous techniques presented should help the reader avoid errors which often recur in the application of control theory within economics. |
calculus of variations and optimal control theory: Deterministic and Stochastic Optimal Control Wendell H. Fleming, Raymond W. Rishel, 2012-12-06 This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle. |
calculus of variations and optimal control theory: The Calculus of Variations Bruce van Brunt, 2006-04-18 Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material. |
calculus of variations and optimal control theory: Optimal Control Bulirsch, Miele, Stoer, Well, 2013-03-08 Optimal Control reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems. |
calculus of variations and optimal control theory: Stochastic Optimal Control in Infinite Dimension Giorgio Fabbri, Fausto Gozzi, Andrzej Święch, 2017-06-22 Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. |
What is punctate nonobstruction right intrarenal calculus?
KIDNEYS/URETERS: Punctate nonobstructive renal calculus in the left lower Received ct scan results, said following: Nonobstructing right interpolar calculus measuring 2 mm. Complete and …
Understanding Punctate Calculus: Expert Answers to Your Questions
I’ve been taking colonoscopy levels of miralax and so believe I’m empty now. However my lower left back and abdomen are still really bothering me. I’m reading my CT scan results and the …
Understanding Punctuate Calculus in the Lower Pole of the
Customer: There may be a puncutate calculus at the lower pole right kidney. No evidence of hydronephrosis, hydrouerter, or asymmetric perinephric stranding is visualized. No evidence of …
Rohit -Expert in Computer, Business, Calculus and Above
Get expert answer from Rohit on a wide range of topics and questions: Computer, Business, Calculus and Above, Homework and more
Activate Your Calculus for Dummies Workbook - Expert Help
Customer: I want to activate my PIN for the Calculus for Dummies Workbook Technician's Assistant: Who makes your router, and what device(s) are you connecting to it? Customer: I'm …
Understanding Chamber Work in California Criminal Court
JACUSTOMER-ks1gnb4c- : ok in this case the defendant pleaded guilty for a misdermeana. community service hours were issued and ordered to be completed by the middle of this year, …
electronicsguy -Expert in Electronics, African Safari, Calculus and …
Get expert answer from electronicsguy on a wide range of topics and questions: Electronics, African Safari, Calculus and Above, Camera and Video and more
Ask Experts & get answers to your questions - ASAP
Want to talk with a licensed doctor, lawyer, vet, mechanic, or other expert? JustAnswer makes it easy. It’s faster than an in-person visit and more reliable than searching the web. Try it!
Suppose that we want to estimate the mean score on a
May 6, 2020 · Calculus and Above. Calculus Questions? Ask a Mathematician for Answers ASAP. Connect one-on-one with {0} who will answer your question
Related Customer Questions - JustAnswer
Customer: I received a phone call telling me I would receive a summons to appear in court on a default on a consumer debt, they gave a case number.
What is punctate nonobstruction right intrarenal calculus?
KIDNEYS/URETERS: Punctate nonobstructive renal calculus in the left lower Received ct scan results, said following: Nonobstructing right interpolar calculus measuring 2 mm. Complete and …
Understanding Punctate Calculus: Expert Answers to Your Questions
I’ve been taking colonoscopy levels of miralax and so believe I’m empty now. However my lower left back and abdomen are still really bothering me. I’m reading my CT scan results and the …
Understanding Punctuate Calculus in the Lower Pole of the
Customer: There may be a puncutate calculus at the lower pole right kidney. No evidence of hydronephrosis, hydrouerter, or asymmetric perinephric stranding is visualized. No evidence of …
Rohit -Expert in Computer, Business, Calculus and Above
Get expert answer from Rohit on a wide range of topics and questions: Computer, Business, Calculus and Above, Homework and more
Activate Your Calculus for Dummies Workbook - Expert Help
Customer: I want to activate my PIN for the Calculus for Dummies Workbook Technician's Assistant: Who makes your router, and what device(s) are you connecting to it? Customer: I'm …
Understanding Chamber Work in California Criminal Court
JACUSTOMER-ks1gnb4c- : ok in this case the defendant pleaded guilty for a misdermeana. community service hours were issued and ordered to be completed by the middle of this year, …
electronicsguy -Expert in Electronics, African Safari, Calculus and …
Get expert answer from electronicsguy on a wide range of topics and questions: Electronics, African Safari, Calculus and Above, Camera and Video and more
Ask Experts & get answers to your questions - ASAP
Want to talk with a licensed doctor, lawyer, vet, mechanic, or other expert? JustAnswer makes it easy. It’s faster than an in-person visit and more reliable than searching the web. Try it!
Suppose that we want to estimate the mean score on a
May 6, 2020 · Calculus and Above. Calculus Questions? Ask a Mathematician for Answers ASAP. Connect one-on-one with {0} who will answer your question
Related Customer Questions - JustAnswer
Customer: I received a phone call telling me I would receive a summons to appear in court on a default on a consumer debt, they gave a case number.