Training Your Own Llm

Advertisement



  training your own llm: Training Your Own Large Language Model StoryBuddiesPlay, 2024-04-26 Demystify the Power of Language with Large Language Models: Your Comprehensive Guide The ability to understand and generate human language is a cornerstone of human intelligence. Artificial intelligence (AI) is rapidly evolving, and Large Language Models (LLMs) are at the forefront of this revolution. These powerful AI tools can process and generate text with remarkable fluency, making them ideal for various applications. This comprehensive guide empowers you to step into the exciting world of LLMs and train your own! Whether you're a seasoned developer, an AI enthusiast, or simply curious about the future of language technology, this book equips you with the knowledge and tools to navigate the LLM landscape. Within these pages, you'll discover: The transformative potential of LLMs: Explore the various tasks LLMs can perform, from generating creative text formats to answering your questions in an informative way, and even translating languages. A step-by-step approach to LLM training: Learn how to define your project goals, identify the right data sources, and choose the optimal LLM architecture for your needs. Essential tools and techniques: Gain insights into popular frameworks like TensorFlow and PyTorch, and delve into practical aspects like data pre-processing and hyperparameter tuning. Fine-tuning and deployment strategies: Unleash the full potential of your LLM by tailoring it to specific tasks and seamlessly integrating it into your applications or workflows. The future of LLMs: Explore cutting-edge advancements like explainable AI and lifelong learning, and discover the potential impact of LLMs on various aspects of society. By the time you finish this guide, you'll be equipped to: Confidently define and plan your LLM project. Train your own LLM using powerful AI frameworks and techniques. Fine-tune your LLM for real-world applications. Deploy and integrate your LLM for seamless functionality. Contribute to the ever-evolving field of large language models. Don't wait any longer! Dive into the world of LLMs and unlock the power of language manipulation with this comprehensive guide. Get started on your LLM journey today!
  training your own llm: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  training your own llm: Building Transformer Models with PyTorch 2.0 Prem Timsina, 2024-03-08 Your key to transformer based NLP, vision, speech, and multimodalities KEY FEATURES ● Transformer architecture for different modalities and multimodalities. ● Practical guidelines to build and fine-tune transformer models. ● Comprehensive code samples with detailed documentation. DESCRIPTION This book covers transformer architecture for various applications including NLP, computer vision, speech processing, and predictive modeling with tabular data. It is a valuable resource for anyone looking to harness the power of transformer architecture in their machine learning projects. The book provides a step-by-step guide to building transformer models from scratch and fine-tuning pre-trained open-source models. It explores foundational model architecture, including GPT, VIT, Whisper, TabTransformer, Stable Diffusion, and the core principles for solving various problems with transformers. The book also covers transfer learning, model training, and fine-tuning, and discusses how to utilize recent models from Hugging Face. Additionally, the book explores advanced topics such as model benchmarking, multimodal learning, reinforcement learning, and deploying and serving transformer models. In conclusion, this book offers a comprehensive and thorough guide to transformer models and their various applications. WHAT YOU WILL LEARN ● Understand the core architecture of various foundational models, including single and multimodalities. ● Step-by-step approach to developing transformer-based Machine Learning models. ● Utilize various open-source models to solve your business problems. ● Train and fine-tune various open-source models using PyTorch 2.0 and the Hugging Face ecosystem. ● Deploy and serve transformer models. ● Best practices and guidelines for building transformer-based models. WHO THIS BOOK IS FOR This book caters to data scientists, Machine Learning engineers, developers, and software architects interested in the world of generative AI. TABLE OF CONTENTS 1. Transformer Architecture 2. Hugging Face Ecosystem 3. Transformer Model in PyTorch 4. Transfer Learning with PyTorch and Hugging Face 5. Large Language Models: BERT, GPT-3, and BART 6. NLP Tasks with Transformers 7. CV Model Anatomy: ViT, DETR, and DeiT 8. Computer Vision Tasks with Transformers 9. Speech Processing Model Anatomy: Whisper, SpeechT5, and Wav2Vec 10. Speech Tasks with Transformers 11. Transformer Architecture for Tabular Data Processing 12. Transformers for Tabular Data Regression and Classification 13. Multimodal Transformers, Architectures and Applications 14. Explore Reinforcement Learning for Transformer 15. Model Export, Serving, and Deployment 16. Transformer Model Interpretability, and Experimental Visualization 17. PyTorch Models: Best Practices and Debugging
  training your own llm: Start Your Own ChatGPT Office with AI Agents Srinidhi Ranganathan, 2024-06-03 As I sit down to pen these words, I'm filled with a profound sense of excitement and purpose. This book, Start Your Own ChatGPT Office with AI Agents, is the culmination of a journey that began with a simple question: how can I empower others to harness the incredible potential of AI in their own endeavors? The inspiration for this book struck me during countless conversations with entrepreneurs, innovators, and business owners eager to explore the possibilities of artificial intelligence. They were fascinated by the transformative impact of AI-driven chatbots and virtual agents but often felt overwhelmed by the complexity of implementation. It became clear to me that there was a need for a practical guide—a roadmap, if you will—that demystifies the process of building and deploying AI agents. And thus, this book was born. Within these pages, you'll find a comprehensive yet accessible blueprint for creating your very own ChatGPT office. From understanding the fundamentals of natural language processing to designing and training your AI agents, each chapter is crafted to equip you with the knowledge and tools necessary to succeed in the rapidly evolving landscape of AI-driven communication. But more than just a technical manual, this book is a testament to the boundless potential of human ingenuity. It's about empowering individuals like you to embrace innovation, seize opportunities, and shape the future of AI in ways that enrich lives and transform industries. As you embark on this journey, I invite you to approach it with an open mind and a spirit of curiosity. Embrace the challenges, celebrate the victories, and remember that the most rewarding discoveries often lie just beyond our comfort zones. Thank you for joining me on this adventure. Together, let's unleash the power of AI to create a world where possibilities are limited only by our imagination. To learn more and stay updated on the latest developments, visit https://www.bookspotz.com/
  training your own llm: Building AI Intensive Python Applications Rachelle Palmer, Ben Perlmutter, Ashwin Gangadhar, Nicholas Larew, Sigfrido Narváez, Thomas Rueckstiess, Henry Weller, Richmond Alake, Shubham Ranjan, 2024-09-06 Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
  training your own llm: Crafting Secure Software Greg Bulmash, Thomas Segura, 2024-09-12
  training your own llm: Large Language Models Projects Pere Martra,
  training your own llm: The Developer's Playbook for Large Language Model Security Steve Wilson, 2024-09-03 Large language models (LLMs) are not just shaping the trajectory of AI, they're also unveiling a new era of security challenges. This practical book takes you straight to the heart of these threats. Author Steve Wilson, chief product officer at Exabeam, focuses exclusively on LLMs, eschewing generalized AI security to delve into the unique characteristics and vulnerabilities inherent in these models. Complete with collective wisdom gained from the creation of the OWASP Top 10 for LLMs list—a feat accomplished by more than 400 industry experts—this guide delivers real-world guidance and practical strategies to help developers and security teams grapple with the realities of LLM applications. Whether you're architecting a new application or adding AI features to an existing one, this book is your go-to resource for mastering the security landscape of the next frontier in AI. You'll learn: Why LLMs present unique security challenges How to navigate the many risk conditions associated with using LLM technology The threat landscape pertaining to LLMs and the critical trust boundaries that must be maintained How to identify the top risks and vulnerabilities associated with LLMs Methods for deploying defenses to protect against attacks on top vulnerabilities Ways to actively manage critical trust boundaries on your systems to ensure secure execution and risk minimization
  training your own llm: Prompt Engineering for LLMs John Berryman, Albert Ziegler, 2024-11-04 Large language models (LLMs) are revolutionizing the world, promising to automate tasks and solve complex problems. A new generation of software applications are using these models as building blocks to unlock new potential in almost every domain, but reliably accessing these capabilities requires new skills. This book will teach you the art and science of prompt engineering-the key to unlocking the true potential of LLMs. Industry experts John Berryman and Albert Ziegler share how to communicate effectively with AI, transforming your ideas into a language model-friendly format. By learning both the philosophical foundation and practical techniques, you'll be equipped with the knowledge and confidence to build the next generation of LLM-powered applications. Understand LLM architecture and learn how to best interact with itDesign a complete prompt-crafting strategy for an applicationGather, triage, and present context elements to make an efficient promptMaster specific prompt-crafting techniques like few-shot learning, chain-of-thought prompting, and RAG
  training your own llm: Pretrain Vision and Large Language Models in Python Emily Webber, Andrea Olgiati, 2023-05-31 Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples Key Features Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines Explore large-scale distributed training for models and datasets with AWS and SageMaker examples Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring Book Description Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization. With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models. You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines. By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future. What you will learn Find the right use cases and datasets for pretraining and fine-tuning Prepare for large-scale training with custom accelerators and GPUs Configure environments on AWS and SageMaker to maximize performance Select hyperparameters based on your model and constraints Distribute your model and dataset using many types of parallelism Avoid pitfalls with job restarts, intermittent health checks, and more Evaluate your model with quantitative and qualitative insights Deploy your models with runtime improvements and monitoring pipelines Who this book is for If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.
  training your own llm: Deep Generative Modeling Jakub M. Tomczak,
  training your own llm: Python Machine Learning Sebastian Raschka, 2015-09-23 Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
  training your own llm: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  training your own llm: Increasing Productivity with Prompt Engineering Alex Stirling, 2024-01-10 Increasing Productivity with Prompt Engineering
  training your own llm: Machine Learning with PyTorch and Scikit-Learn Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, 2022-02-25 This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
  training your own llm: Unlocking the Power of Auto-GPT and Its Plugins Wladislav Cugunov, 2024-09-13 Harness the revolutionary power of Auto-GPT and its plugins to transform your projects with advanced AI capabilities Key Features Discover the untapped power of Auto-GPT, opening doors to limitless AI possibilities Craft your own AI applications, from chat assistants to speech companions, with step-by-step guidance Explore advanced AI topics like Docker configuration and LLM integration for cutting-edge AI development Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionUnlocking the Power of Auto-GPT and Its Plugins reveals how Auto-GPT is transforming the way we work and live, by breaking down complex goals into manageable subtasks and intelligently utilizing the internet and other tools. With a background as a self-taught full stack developer and key contributor to Auto-GPT’s Inner Team, the author blends unconventional thinking with practical expertise to make Auto-GPT and its plugins accessible to developers at all levels. This book explores the potential of Auto-GPT and its associated plugins through practical applications. Beginning with an introduction to Auto-GPT, it guides you through setup, utilization, and the art of prompt generation. You'll gain a deep understanding of the various plugin types and how to create them. The book also offers expert guidance on developing AI applications such as chat assistants, research aides, and speech companions, while covering advanced topics such as Docker configuration, continuous mode operation, and integrating your own LLM with Auto-GPT. By the end of this book, you'll be equipped with the knowledge and skills needed for AI application development, plugin creation, setup procedures, and advanced Auto-GPT features to fuel your AI journey.What you will learn Develop a solid understanding of Auto-GPT's fundamental principles Hone your skills in creating engaging and effective prompts Effectively harness the potential of Auto-GPT's versatile plugins Tailor and personalize AI applications to meet specific requirements Proficiently manage Docker configurations for advanced setup Ensure the safe and efficient use of continuous mode Integrate your own LLM with Auto-GPT for enhanced performance Who this book is for This book is for developers, data scientists, and AI enthusiasts interested in leveraging the power of Auto-GPT and its plugins to create powerful AI applications. Basic programming knowledge and an understanding of artificial intelligence concepts are required to make the most of this book. Familiarity with the terminal will also be helpful.
  training your own llm: Building LLM Powered Applications Valentina Alto, 2024-05-22 Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications Key Features Embed LLMs into real-world applications Use LangChain to orchestrate LLMs and their components within applications Grasp basic and advanced techniques of prompt engineering Book DescriptionBuilding LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer, ultimately paving the way for the emergence of large foundation models (LFMs) that extend the boundaries of AI capabilities. The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain, we guide you through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio. Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.What you will learn Explore the core components of LLM architecture, including encoder-decoder blocks and embeddings Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM Use AI orchestrators like LangChain, with Streamlit for the frontend Get familiar with LLM components such as memory, prompts, and tools Learn how to use non-parametric knowledge and vector databases Understand the implications of LFMs for AI research and industry applications Customize your LLMs with fine tuning Learn about the ethical implications of LLM-powered applications Who this book is for Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics. We don’t assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
  training your own llm: Python Natural Language Processing Cookbook Zhenya Antić, Saurabh Chakravarty, 2024-09-13 Updated to include three new chapters on transformers, natural language understanding (NLU) with explainable AI, and dabbling with popular LLMs from Hugging Face and OpenAI Key Features Leverage ready-to-use recipes with the latest LLMs, including Mistral, Llama, and OpenAI models Use LLM-powered agents for custom tasks and real-world interactions Gain practical, in-depth knowledge of transformers and their role in implementing various NLP tasks with open-source and advanced LLMs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionHarness the power of Natural Language Processing to overcome real-world text analysis challenges with this recipe-based roadmap written by two seasoned NLP experts with vast experience transforming various industries with their NLP prowess. You’ll be able to make the most of the latest NLP advancements, including large language models (LLMs), and leverage their capabilities through Hugging Face transformers. Through a series of hands-on recipes, you’ll master essential techniques such as extracting entities and visualizing text data. The authors will expertly guide you through building pipelines for sentiment analysis, topic modeling, and question-answering using popular libraries like spaCy, Gensim, and NLTK. You’ll also learn to implement RAG pipelines to draw out precise answers from a text corpus using LLMs. This second edition expands your skillset with new chapters on cutting-edge LLMs like GPT-4, Natural Language Understanding (NLU), and Explainable AI (XAI)—fostering trust and transparency in your NLP models. By the end of this book, you'll be equipped with the skills to apply advanced text processing techniques, use pre-trained transformer models, build custom NLP pipelines to extract valuable insights from text data to drive informed decision-making.What you will learn Understand fundamental NLP concepts along with their applications using examples in Python Classify text quickly and accurately with rule-based and supervised methods Train NER models and perform sentiment analysis to identify entities and emotions in text Explore topic modeling and text visualization to reveal themes and relationships within text Leverage Hugging Face and OpenAI LLMs to perform advanced NLP tasks Use question-answering techniques to handle both open and closed domains Apply XAI techniques to better understand your model predictions Who this book is for This updated edition of the Python Natural Language Processing Cookbook is for data scientists, machine learning engineers, and developers with a background in Python. Whether you’re looking to learn NLP techniques, extract valuable insights from textual data, or create foundational applications, this book will equip you with basic to intermediate skills. No prior NLP knowledge is necessary to get started. All you need is familiarity with basic programming principles. For seasoned developers, the updated sections offer the latest on transformers, explainable AI, and Generative AI with LLMs.
  training your own llm: The Complete Obsolete Guide to Generative AI David Clinton, 2024-08-20 The last book on AI you’ll ever need. We swear! AI technology moves so fast that this book is probably already out of date! But don’t worry—The Complete Obsolete Guide to Generative AI is still an essential read for anyone who wants to make generative AI into a tool rather than a toy. It shows you how to get the best out of AI no matter what changes come in the future. You’ll be able to use common automation and scripting tools to take AI to a new level, and access raw (and powerful) GPT models via API. Inside The Complete Obsolete Guide to Generative AI you will find: • Just enough background info on AI! What an AI model is how it works • Ways to create text, code, and images for your organization's needs • Training AI models on your local data stores or on the internet • Business intelligence and analytics uses for AI • Building your own custom AI models • Looking ahead to the future of generative AI Where to get started? How about creating exciting images, video, and even audio with AI. Need more? Learn to harness AI to speed up any everyday work task, including writing boilerplate code, creating specialized documents, and analyzing your own data. Push beyond simple ChatGPT prompts! Discover ways to double your productivity and take on projects you never thought were possible! AI—and this book—are here to show you how. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Everything you learn about Generative AI tools like Chat-GPT, Copilot, and Claude becomes obsolete almost immediately. So how do you decide where to spend your time—and your company’s money? This entertaining and unbelievably practical book shows you what you can (and should!) do with AI now and how to roll with the changes as they happen. About the book The Complete Obsolete Guide to Generative AI is a lighthearted introduction to Generative AI written for technology professionals and motivated AI enthusiasts. In it, you’ll get a quick-paced survey of AI techniques for creating code, text, images, and presentations, working with data, and much more. As you explore the hands-on exercises, you’ll build an intuition for how Generative AI can transform your daily work and communication—and maybe even learn how to make peace with your new robot overlords. What's inside • The big picture of Generative AI tools and tech • Creating useful text, code, and images • Writing effective prompts • AI-driven data analytics About the reader Written for developers, admins, and other IT pros. Some examples use simple Python code. About the author David Clinton is an AWS Solutions Architect, a Linux server administrator and a world-renowned expert on obsolescence. The technical editor on this book was Maris Sekar. Table of Contents 1 Understanding generative AI basics 2 Managing generative AI 3 Creating text and code 4 Creating with media resources 5 Feeding data to your generative AI models 6 Prompt engineering: Optimizing your experience 7 Outperforming legacy research and learning tools 8 Understanding stuff better 9 Building and running your own large language model 10 How I learned to stop worrying and love the chaos 11 Experts weigh in on putting AI to work A Important definitions and a brief history B Generative AI resources C Installing Python
  training your own llm: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  training your own llm: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  training your own llm: Database Design and Modeling with Google Cloud Abirami Sukumaran, 2023-12-29 Build faster and efficient real-world applications on the cloud with a fitting database model that's perfect for your needs Key Features Familiarize yourself with business and technical considerations involved in modeling the right database Take your data to applications, analytics, and AI with real-world examples Learn how to code, build, and deploy end-to-end solutions with expert advice Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the age of lightning-speed delivery, customers want everything developed, built, and delivered at high speed and at scale. Knowledge, design, and choice of database is critical in that journey, but there is no one-size-fits-all solution. This book serves as a comprehensive and practical guide for data professionals who want to design and model their databases efficiently. The book begins by taking you through business, technical, and design considerations for databases. Next, it takes you on an immersive structured database deep dive for both transactional and analytical real-world use cases using Cloud SQL, Spanner, and BigQuery. As you progress, you’ll explore semi-structured and unstructured database considerations with practical applications using Firestore, cloud storage, and more. You’ll also find insights into operational considerations for databases and the database design journey for taking your data to AI with Vertex AI APIs and generative AI examples. By the end of this book, you will be well-versed in designing and modeling data and databases for your applications using Google Cloud.What you will learn Understand different use cases and real-world applications of data in the cloud Work with document and indexed NoSQL databases Get to grips with modeling considerations for analytics, AI, and ML Use real-world examples to learn about ETL services Design structured, semi-structured, and unstructured data for your applications and analytics Improve observability, performance, security, scalability, latency SLAs, SLIs, and SLOs Who this book is for This book is for database developers, data engineers, and architects looking to design, model, and build database applications on the cloud with an extended focus on operational consideration and taking their data to AI. Data scientists, as well ML and AI engineers who want to use Google Cloud services in the data to AI journey will also find plenty of useful information in this book. It will also be useful to data analysts and BI developers who want to use SQL impactfully to generate ML and generative AI insights from their data.
  training your own llm: Deep Learning with JAX Grigory Sapunov, 2024-10-29 Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library. The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google’s Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations. In Deep Learning with JAX you will learn how to: • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax • Leverage libraries and modules from the JAX ecosystem Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX’s concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You’ll learn how to use JAX’s ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Google’s JAX offers a fresh vision for deep learning. This powerful library gives you fine control over low level processes like gradient calculations, delivering fast and efficient model training and inference, especially on large datasets. JAX has transformed how research scientists approach deep learning. Now boasting a robust ecosystem of tools and libraries, JAX makes evolutionary computations, federated learning, and other performance-sensitive tasks approachable for all types of applications. About the book Deep Learning with JAX teaches you to build effective neural networks with JAX. In this example-rich book, you’ll discover how JAX’s unique features help you tackle important deep learning performance challenges, like distributing computations across a cluster of TPUs. You’ll put the library into action as you create an image classification tool, an image filter application, and other realistic projects. The nicely-annotated code listings demonstrate how JAX’s functional programming mindset improves composability and parallelization. What's inside • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax About the reader For intermediate Python programmers who are familiar with deep learning. About the author Grigory Sapunov holds a Ph.D. in artificial intelligence and is a Google Developer Expert in Machine Learning. The technical editor on this book was Nicholas McGreivy. Table of Contents Part 1 1 When and why to use JAX 2 Your first program in JAX Part 2 3 Working with arrays 4 Calculating gradients 5 Compiling your code 6 Vectorizing your code 7 Parallelizing your computations 8 Using tensor sharding 9 Random numbers in JAX 10 Working with pytrees Part 3 11 Higher-level neural network libraries 12 Other members of the JAX ecosystem A Installing JAX B Using Google Colab C Using Google Cloud TPUs D Experimental parallelization
  training your own llm: Transforming Conversational AI Michael McTear,
  training your own llm: Mastering Large Language Models with Python Raj Arun R, 2024-04-12 A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index
  training your own llm: Advanced ASP.NET Core 8 Security Scott Norberg,
  training your own llm: Generative AI for Cloud Solutions Paul Singh, Anurag Karuparti, 2024-04-22 Explore Generative AI, the engine behind ChatGPT, and delve into topics like LLM-infused frameworks, autonomous agents, and responsible innovation, to gain valuable insights into the future of AI Key Features Gain foundational GenAI knowledge and understand how to scale GenAI/ChatGPT in the cloud Understand advanced techniques for customizing LLMs for organizations via fine-tuning, prompt engineering, and responsible AI Peek into the future to explore emerging trends like multimodal AI and autonomous agents Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionGenerative artificial intelligence technologies and services, including ChatGPT, are transforming our work, life, and communication landscapes. To thrive in this new era, harnessing the full potential of these technologies is crucial. Generative AI for Cloud Solutions is a comprehensive guide to understanding and using Generative AI within cloud platforms. This book covers the basics of cloud computing and Generative AI/ChatGPT, addressing scaling strategies and security concerns. With its help, you’ll be able to apply responsible AI practices and other methods such as fine-tuning, RAG, autonomous agents, LLMOps, and Assistants APIs. As you progress, you’ll learn how to design and implement secure and scalable ChatGPT solutions on the cloud, while also gaining insights into the foundations of building conversational AI, such as chatbots. This process will help you customize your AI applications to suit your specific requirements. By the end of this book, you’ll have gained a solid understanding of the capabilities of Generative AI and cloud computing, empowering you to develop efficient and ethical AI solutions for a variety of applications and services.What you will learn Get started with the essentials of generative AI, LLMs, and ChatGPT, and understand how they function together Understand how we started applying NLP to concepts like transformers Grasp the process of fine-tuning and developing apps based on RAG Explore effective prompt engineering strategies Acquire insights into the app development frameworks and lifecycles of LLMs, including important aspects of LLMOps, autonomous agents, and Assistants APIs Discover how to scale and secure GenAI systems, while understanding the principles of responsible AI Who this book is for This artificial intelligence book is for aspiring cloud architects, data analysts, cloud developers, data scientists, AI researchers, technical business leaders, and technology evangelists looking to understanding the interplay between GenAI and cloud computing. Some chapters provide a broad overview of GenAI, which are suitable for readers with basic to no prior AI experience, aspiring to harness AI's potential. Other chapters delve into technical concepts that require intermediate data and AI skills. A basic understanding of a cloud ecosystem is required to get the most out of this book.
  training your own llm: Adversarial AI Attacks, Mitigations, and Defense Strategies John Sotiropoulos, 2024-07-26 Understand how adversarial attacks work against predictive and generative AI, and learn how to safeguard AI and LLM projects with practical examples leveraging OWASP, MITRE, and NIST Key Features Understand the connection between AI and security by learning about adversarial AI attacks Discover the latest security challenges in adversarial AI by examining GenAI, deepfakes, and LLMs Implement secure-by-design methods and threat modeling, using standards and MLSecOps to safeguard AI systems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAdversarial attacks trick AI systems with malicious data, creating new security risks by exploiting how AI learns. This challenges cybersecurity as it forces us to defend against a whole new kind of threat. This book demystifies adversarial attacks and equips cybersecurity professionals with the skills to secure AI technologies, moving beyond research hype or business-as-usual strategies. The strategy-based book is a comprehensive guide to AI security, presenting a structured approach with practical examples to identify and counter adversarial attacks. This book goes beyond a random selection of threats and consolidates recent research and industry standards, incorporating taxonomies from MITRE, NIST, and OWASP. Next, a dedicated section introduces a secure-by-design AI strategy with threat modeling to demonstrate risk-based defenses and strategies, focusing on integrating MLSecOps and LLMOps into security systems. To gain deeper insights, you’ll cover examples of incorporating CI, MLOps, and security controls, including open-access LLMs and ML SBOMs. Based on the classic NIST pillars, the book provides a blueprint for maturing enterprise AI security, discussing the role of AI security in safety and ethics as part of Trustworthy AI. By the end of this book, you’ll be able to develop, deploy, and secure AI systems effectively.What you will learn Understand poisoning, evasion, and privacy attacks and how to mitigate them Discover how GANs can be used for attacks and deepfakes Explore how LLMs change security, prompt injections, and data exposure Master techniques to poison LLMs with RAG, embeddings, and fine-tuning Explore supply-chain threats and the challenges of open-access LLMs Implement MLSecOps with CIs, MLOps, and SBOMs Who this book is for This book tackles AI security from both angles - offense and defense. AI builders (developers and engineers) will learn how to create secure systems, while cybersecurity professionals, such as security architects, analysts, engineers, ethical hackers, penetration testers, and incident responders will discover methods to combat threats and mitigate risks posed by attackers. The book also provides a secure-by-design approach for leaders to build AI with security in mind. To get the most out of this book, you’ll need a basic understanding of security, ML concepts, and Python.
  training your own llm: Deep Learning with PyTorch Luca Pietro Giovanni Antiga, Eli Stevens, Thomas Viehmann, 2020-07-01 “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production
  training your own llm: Breathe Easy Lawrence Martin, 1984
  training your own llm: ChatGPT for Conversational AI and Chatbots Adrian Thompson, 2024-07-30 Explore ChatGPT technologies to create state-of-the-art chatbots and voice assistants, and prepare to lead the AI revolution Key Features Learn how to leverage ChatGPT to create innovative conversational AI solutions for your organization Harness LangChain and delve into step-by-step LLM application development for conversational AI Gain insights into security, privacy, and the future landscape of large language models and conversational AI Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionChatGPT for Conversational AI and Chatbots is a definitive resource for exploring conversational AI, ChatGPT, and large language models. This book introduces the fundamentals of ChatGPT and conversational AI automation. You’ll explore the application of ChatGPT in conversation design, the use of ChatGPT as a tool to create conversational experiences, and a range of other practical applications. As you progress, you’ll delve into LangChain, a dynamic framework for LLMs, covering topics such as prompt engineering, chatbot memory, using vector stores, and validating responses. Additionally, you’ll learn about creating and using LLM-enabling tools, monitoring and fine tuning, LangChain UI tools such as LangFlow, and the LangChain ecosystem. You’ll also cover popular use cases, such as using ChatGPT in conjunction with your own data. Later, the book focuses on creating a ChatGPT-powered chatbot that can comprehend and respond to queries directly from your unique data sources. The book then guides you through building chatbot UIs with ChatGPT API and some of the tools and best practices available. By the end of this book, you’ll be able to confidently leverage ChatGPT technologies to build conversational AI solutions.What you will learn Gain a solid understanding of ChatGPT and its capabilities and limitations Understand how to use ChatGPT for conversation design Discover how to use advanced LangChain techniques, such as prompting, memory, agents, chains, vector stores, and tools Create a ChatGPT chatbot that can answer questions about your own data Develop a chatbot powered by ChatGPT API Explore the future of conversational AI, LLMs, and ChatGPT alternatives Who this book is for This book is for tech-savvy readers, conversational AI practitioners, engineers, product owners, business analysts, and entrepreneurs wanting to integrate ChatGPT into conversational experiences and explore the possibilities of this game-changing technology. Anyone curious about using internal data with ChatGPT and looking to stay up to date with the developments in large language models will also find this book helpful. Some expertise in coding and standard web design concepts would be useful, along with familiarity with conversational AI terminology, though not essential.
  training your own llm: Mastering LLM Applications with LangChain and Hugging Face Hunaidkhan Pathan, Nayankumar Gajjar, 2024-09-21 DESCRIPTION The book is all about the basics of NLP, generative AI, and their specific component LLM. In this book, we have provided conceptual knowledge about different terminologies and concepts of NLP and NLG with practical hands-on. This comprehensive book offers a deep dive into the world of NLP and LLMs. Starting with the fundamentals of Python programming and code editors, the book gradually introduces NLP concepts, including text preprocessing, word embeddings, and transformer architectures. You will explore the architecture and capabilities of popular models like GPT-3 and BERT. The book also covers practical aspects of LLM usage for RAG applications using frameworks like LangChain and Hugging Face and deploying them in real world applications. With a focus on both theoretical knowledge and hands-on experience, this book is ideal for anyone looking to master the art of NLP and LLMs. The book also contains AWS Cloud deployment, which will help readers step into the world of cloud computing. As the book contains both theoretical and practical approaches, it will help the readers to gain confidence in the deployment of LLMs for any use cases, as well as get acquainted with the required generative AI knowledge to crack the interviews. KEY FEATURES ● Covers Python basics, NLP concepts, and terminologies, including LLM and RAG concepts. ● Provides exposure to LangChain, Hugging Face ecosystem, and chatbot creation using custom data. ● Guides on integrating chatbots with real-time applications and deploying them on AWS Cloud. WHAT YOU WILL LEARN ● Basics of Python, which contains Python concepts, installation, and code editors. ● Foundation of NLP and generative AI concepts and different terminologies being used in NLP and generative AI domain. ● LLMs and their importance in the cutting edge of AI. ● Creating chatbots using custom data using open source LLMs without spending a single penny. ● Integration of chatbots with real-world applications like Telegram. WHO THIS BOOK IS FOR This book is ideal for beginners and freshers entering the AI or ML field, as well as those at an intermediate level looking to deepen their understanding of generative AI, LLMs, and cloud deployment. TABLE OF CONTENTS 1. Introduction to Python and Code Editors 2. Installation of Python, Required Packages, and Code Editors 3. Ways to Run Python Scripts 4. Introduction to NLP and its Concepts 5. Introduction to Large Language Models 6. Introduction of LangChain, Usage and Importance 7. Introduction of Hugging Face, its Usage and Importance 8. Creating Chatbots Using Custom Data with LangChain and Hugging Face Hub 9. Hyperparameter Tuning and Fine Tuning Pre-Trained Models 10. Integrating LLMs into Real-World Applications–Case Studies 11. Deploying LLMs in Cloud Environments for Scalability 12. Future Directions: Advances in LLMs and Beyond Appendix A: Useful Tips for Efficient LLM Experimentation Appendix B: Resources and References
  training your own llm: Coding with ChatGPT and Other LLMs Dr. Vincent Austin Hall, 2024-11-29 Leverage LLM (large language models) for developing unmatched coding skills, solving complex problems faster, and implementing AI responsibly Key Features Understand the strengths and weaknesses of LLM-powered software for enhancing performance while minimizing potential issues Grasp the ethical considerations, biases, and legal aspects of LLM-generated code for responsible AI usage Boost your coding speed and improve quality with IDE integration Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionKeeping up with the AI revolution and its application in coding can be challenging, but with guidance from AI and ML expert Dr. Vincent Hall—who holds a PhD in machine learning and has extensive experience in licensed software development—this book helps both new and experienced coders to quickly adopt best practices and stay relevant in the field. You’ll learn how to use LLMs such as ChatGPT and Bard to produce efficient, explainable, and shareable code and discover techniques to maximize the potential of LLMs. The book focuses on integrated development environments (IDEs) and provides tips to avoid pitfalls, such as bias and unexplainable code, to accelerate your coding speed. You’ll master advanced coding applications with LLMs, including refactoring, debugging, and optimization, while examining ethical considerations, biases, and legal implications. You’ll also use cutting-edge tools for code generation, architecting, description, and testing to avoid legal hassles while advancing your career. By the end of this book, you’ll be well-prepared for future innovations in AI-driven software development, with the ability to anticipate emerging LLM technologies and generate ideas that shape the future of development.What you will learn Utilize LLMs for advanced coding tasks, such as refactoring and optimization Understand how IDEs and LLM tools help coding productivity Master advanced debugging to resolve complex coding issues Identify and avoid common pitfalls in LLM-generated code Explore advanced strategies for code generation, testing, and description Develop practical skills to advance your coding career with LLMs Who this book is for This book is for experienced coders and new developers aiming to master LLMs, data scientists and machine learning engineers looking for advanced techniques for coding with LLMs, and AI enthusiasts exploring ethical and legal implications. Tech professionals will find practical insights for innovation and career growth in this book, while AI consultants and tech hobbyists will discover new methods for training and personal projects.
  training your own llm: Objects, Data & AI Reeshabh Choudhary, 2023-11-10 This book is about uncovering a journey of how Software programming evolved and AI based technologies came into foray. This book tries to connect the dots for a new programmer, starting on his/her journey into the software development world. With so many technologies evolving around every single day, with new breaches in innovation in the field of AI/ML or Data Science, which gets the job done in a whisker, as programmers we tend to think, where do we stand? The journey or even the thought of making sense of everything around us can be quite overwhelming. From the days of C/C++ programming to Java/C#/JavaScript and Python/MATLAB/R, programming has exponentially evolved. And so, does the computational ability of computers, which also helped in faster execution of these programs, but also to extraction of Information from the data generated via the applications developed by these programs. In this digital age, everything seems to be connected and yet we sweat making sense of all these connections. In the interconnected digital age, understanding the connections between various technologies can be challenging. The book aims to bridge some of these gaps by providing readers with a foundational understanding of how programming, data, and machine learning are interconnected. By grasping these fundamentals, software developers can connect the dots according to their specific requirements.
  training your own llm: Augmented Intelligence and Intelligent Tutoring Systems Claude Frasson, Phivos Mylonas, Christos Troussas, 2023-05-21 This book constitutes the refereed proceedings of the 19th International Conference on Augmented Intelligence and Intelligent Tutoring Systems, ITS 2023, held in Corfu, Greece, during June 2-5, 2023. The 41 full papers and 19 short papers presented in this book were carefully reviewed and selected from 84 submissions. The papers are divided into the following topical sections: augmented intelligence in tutoring systems; augmented intelligence in healthcare informatics; augmented intelligence in games, serious games and virtual reality; neural networks and data mining; augmented intelligence and metaverse; security, privacy and ethics in augmented intelligence; and applied natural language processing.
  training your own llm: Approaching (Almost) Any Machine Learning Problem Abhishek Thakur, 2020-07-04 This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub
  training your own llm: Handbook of Statistical Analysis Robert Nisbet, Gary D. Miner, Keith McCormick, 2024-09-16 Handbook of Statistical Analysis: AI and ML Applications, third edition, is a comprehensive introduction to all stages of data analysis, data preparation, model building, and model evaluation. This valuable resource is useful to students and professionals across a variety of fields and settings: business analysts, scientists, engineers, and researchers in academia and industry. General descriptions of algorithms together with case studies help readers understand technical and business problems, weigh the strengths and weaknesses of modern data analysis algorithms, and employ the right analytical methods for practical application. This resource is an ideal guide for users who want to address massive and complex datasets with many standard analytical approaches and be able to evaluate analyses and solutions objectively. It includes clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques; offers accessible tutorials; and discusses their application to real-world problems. - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data analytics to build successful predictive analytic solutions - Provides in-depth descriptions and directions for performing many data preparation operations necessary to generate data sets in the proper form and format for submission to modeling algorithms - Features clear, intuitive explanations of standard analytical tools and techniques and their practical applications - Provides a number of case studies to guide practitioners in the design of analytical applications to solve real-world problems in their data domain - Offers valuable tutorials on the book webpage with step-by-step instructions on how to use suggested tools to build models - Provides predictive insights into the rapidly expanding Intelligence Age as it takes over from the Information Age, enabling readers to easily transition the book's content into the tools of the future
  training your own llm: Machine Learning Upgrade Kristen Kehrer, Caleb Kaiser, 2024-07-29 A much-needed guide to implementing new technology in workspaces From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system—not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices. Gain an understanding of the intersection between large language models and unstructured data Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking Discover best practices for training, fine tuning, and evaluating LLMs Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.
  training your own llm: Understanding Machine Learning Shai Shalev-Shwartz, Shai Ben-David, 2014-05-19 Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
  training your own llm: Customer 360 Martin Kihn, Andrea Lin, 2024-11-13 Become more competitive by developing a superior customer experience through data, AI, and trust - and get your organization ready for AI agents like Agentforce Customer 360: How Data, AI, and Trust Changes Everything delivers key insight and vision on using emerging technologies to delight customers and become more competitive by providing a superior customer experience. Find out why AI agents like Agentforce need a strong foundation of customer data. This book helps readers attract and engage their customers across channels and throughout their journey, from acquisition and onboarding, through service, upsell, retention, and win-back. To demonstrate the influence and importance of these ideas, this book contains a multitude of real-world case studies from companies in a range of industries, with business models, and at various stages of digital maturity. Readers will learn about: Using exciting technologies like AI and GPT while building a commitment to ethical use, safety, and privacy through secure guardrails Getting ready to use exciting emerging technologies like AI agents and autonomous AI Organizing data around customers, prospects, and accounts—even if that data comes from many different sources in different formats Making new technologies an extension of your existing data investments so that both work better Choosing a strategy and implementation plan to minimize time-to-value and ensure success weighing build, buy, or partner Handling internal stakeholders and dealing with change in a way that benefits the business For business leaders, executives, managers, and entrepreneurs, Customer 360: How Data, AI, and Trust Changes Everything is an essential read to understand and connect technology, people, processes, and strategy—truly the future of customer engagement—and leave competitors wondering what just happened.
Replit — How to train your own Large Language Models
18 Apr 2023 · Prior to tokenization, we train our own custom vocabulary …

Replit — Productizing Large Language Models
Large Language Models (LLMs) are known for their near-magical ability …

Get Started with LLMs: AI Camp x Replit Course Now Available
9 Mar 2023 · Gitless and instant, from start to running LLM App in the first …

Replit — State of AI Development: 34x growth in A…
13 Jul 2023 · With the introduction of Large Language Models (LLMs), for …

Replit — Hackers, Pros, and Teams users can now code fo…
Stay Connected Starting today, all users on Hacker, Pro, or Teams plans will …

Replit — How to train your own Large Language Models
18 Apr 2023 · Prior to tokenization, we train our own custom vocabulary using a random subsample of the same data that we use for model training. A custom vocabulary allows our model to better understand and generate code content. This results in improved model performance, and speeds up model training and inference.

Replit — Productizing Large Language Models
Large Language Models (LLMs) are known for their near-magical ability to learn from very few examples -- as little as zero -- to create language wonders. LLMs can chat, write poetry, write code, and even do basic arithmetic. However, the same properties that make LLMs magical also make them challenging from an engineering perspective. At Replit we have deployed …

Get Started with LLMs: AI Camp x Replit Course Now Available
9 Mar 2023 · Gitless and instant, from start to running LLM App in the first 15 minutes. Replit and AI Camp are launching a brand new, 4-hour course, right here on Replit! Unlock the Power of LLMs like GPT with Python, is a four-lesson course that’ll teach you: How to access AI APIs Implementing GPT-2 Trade up to Gradio, Flan-T5 and GPT-3 Build your own auto-summarizer …

Replit — State of AI Development: 34x growth in AI projects, …
13 Jul 2023 · With the introduction of Large Language Models (LLMs), for the first time, Machine Learning (ML) and Artificial Intelligence (AI) became accessible to everyday developers. Apps that feel magical, even software that was practically impossible to build by big technology companies with billions in R&D spend, suddenly became not only possibly, but a joy to build and share. …

Replit — Hackers, Pros, and Teams users can now code for hours …
Stay Connected Starting today, all users on Hacker, Pro, or Teams plans will see a 10x reduction in container restarts while coding in the Workspace. Previously, you would experience a restart at least once an hour. Now you can code for multiple hours straight without restarts. Deep work can stay uninterrupted and you can keep programs running longer while you build. Repls are …

Replit — Keeping Your API Keys Safe
9 Jun 2023 · Keeping Your API Keys Safe. Fri, Jun 9, 2023. J Malcolm. Replit gives you the power to both build your own applications and to leverage powerful third party services through their APIs. By integrating third party services into their Repls, Replit users have unlocked a diverse range of capabilities such as speech to text, video livestreaming ...

Replit — Why We Changed Our Resource Limits and Plans
6 Aug 2023 · Why We Changed Our Resource Limits and Plans. Sun, Aug 6, 2023. The Replit Team. Replit gives users a computer in the cloud so they can code from any device. Our plan from the start has been to be the best place for anyone in the world to bring their idea to life. This is a hugely ambitious goal, one that required nearly a decade of building to ...

Replit — Introducing the Python package cache
Figuring out how to install third-party libraries can derail people from learning to code or starting a new side project. We built the Universal Package Manager (UPM for short) to save people from having to think about package installation at all. Just import the library, press run, and UPM will install it into your repl! Every time you run a repl or a repl wakes up, UPM checks to see if it ...