Advertisement
the feynman lectures on physics volume 1: Lectures On Computation Richard P. Feynman, 1996-09-08 Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics, Vol. III Richard P. Feynman, Robert B. Leighton, Matthew Sands, 2011-10-04 New edition features improved typography, figures and tables, expanded indexes, and 885 new corrections. |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics, Vol. I Richard P. Feynman, Robert B. Leighton, Matthew Sands, 2015-09-29 The whole thing was basically an experiment, Richard Feynman said late in his career, looking back on the origins of his lectures. The experiment turned out to be hugely successful, spawning publications that have remained definitive and introductory to physics for decades. Ranging from the basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight. Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman. |
the feynman lectures on physics volume 1: Feynman's Tips on Physics Richard P. Feynman, Michael A Gottlieb, 2013-01-29 Feynman's Tips on Physics is a delightful collection of Richard P. Feynman's insights and an essential companion to his legendary Feynman Lectures on Physics With characteristic flair, insight, and humor, Feynman discusses topics physics students often struggle with and offers valuable tips on addressing them. Included here are three lectures on problem-solving and a lecture on inertial guidance omitted from The Feynman Lectures on Physics. An enlightening memoir by Matthew Sands and oral history interviews with Feynman and his Caltech colleagues provide firsthand accounts of the origins of Feynman's landmark lecture series. Also included are incisive and illuminating exercises originally developed to supplement The Feynman Lectures on Physics, by Robert B. Leighton and Rochus E. Vogt. Feynman's Tips on Physics was co-authored by Michael A. Gottlieb and Ralph Leighton to provide students, teachers, and enthusiasts alike an opportunity to learn physics from some of its greatest teachers, the creators of The Feynman Lectures on Physics. |
the feynman lectures on physics volume 1: Exercises for the Feynman Lectures on Physics Richard Phillips Feynman (Physiker, USA), 2014 |
the feynman lectures on physics volume 1: Feynman's Lost Lecture David Goodstein, Judith R. Goodstein, 2009-11-06 Glorious.—Wall Street Journal Rescued from obscurity, Feynman's Lost Lecture is a blessing for all Feynman followers. Most know Richard Feynman for the hilarious anecdotes and exploits in his best-selling books Surely You're Joking, Mr. Feynman! and What Do You Care What Other People Think? But not always obvious in those stories was his brilliance as a pure scientist—one of the century's greatest physicists. With this book and CD, we hear the voice of the great Feynman in all his ingenuity, insight, and acumen for argument. This breathtaking lecture—The Motion of the Planets Around the Sun—uses nothing more advanced than high-school geometry to explain why the planets orbit the sun elliptically rather than in perfect circles, and conclusively demonstrates the astonishing fact that has mystified and intrigued thinkers since Newton: Nature obeys mathematics. David and Judith Goodstein give us a beautifully written short memoir of life with Feynman, provide meticulous commentary on the lecture itself, and relate the exciting story of their effort to chase down one of Feynman's most original and scintillating lectures. |
the feynman lectures on physics volume 1: Feynman Lectures On Gravitation Richard Feynman, 2018-05-04 The Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took an untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein's general theory of relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the principle of equivalence. |
the feynman lectures on physics volume 1: An Introduction to Mechanics Daniel Kleppner, Robert Kolenkow, 2014 This second edition is ideal for classical mechanics courses for first- and second-year undergraduates with foundation skills in mathematics. |
the feynman lectures on physics volume 1: Feynman Lectures On Computation Richard P. Feynman, 2018-07-03 When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers. |
the feynman lectures on physics volume 1: The Character of Physical Law Richard P Feynman, 2007-09-06 Collecting legendary lectures from freewheeling scientific genius Richard P. Feynman, The Character of Physical Law is the perfect example of his gift for making complex subjects accessible and entertaining A series of classic lectures, delivered in 1960 and recorded for the BBC. This is Feynman's unique take on the problems and puzzles that lie at the heart of physical theory - with Newton's Law of Gravitation; on whether time can ever go backwards; on maths as the supreme language of nature. Demonstrates Feynman's knack of finding the right everyday illustration to bring out the essence of a complicated principle - eg brilliant analogy between the law of conservation energy and the problem of drying yourself with wet towels. 'Feynman's style inspired a generation of scientists. This volume remains the best record I know of his exhilarating vision' Paul Davies |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics, Vol. II Richard P. Feynman, Robert B. Leighton, Matthew Sands, 2011-10-04 New edition features improved typography, figures and tables, expanded indexes, and 885 new corrections. |
the feynman lectures on physics volume 1: The Feynman lectures on physics: Mainly electromagnetism and matter , 1965 |
the feynman lectures on physics volume 1: Feynman Lectures on Physics Richard Phillips Feynman, |
the feynman lectures on physics volume 1: Probability in Physics Yemima Ben-Menahem, Meir Hemmo, 2012-01-25 What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive. |
the feynman lectures on physics volume 1: Visual Differential Geometry and Forms Tristan Needham, 2021-07-13 An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught. |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics, Vol. 1 Richard Phillips Feynman, 1963 |
the feynman lectures on physics volume 1: Physics for Mathematicians Michael Spivak, 2010 |
the feynman lectures on physics volume 1: QED and the Men Who Made It S. S. Schweber, 2020-05-05 In the 1930s, physics was in a crisis. There appeared to be no way to reconcile the new theory of quantum mechanics with Einstein's theory of relativity. Several approaches had been tried and had failed. In the post-World War II period, four eminent physicists rose to the challenge and developed a calculable version of quantum electrodynamics (QED), probably the most successful theory in physics. This formulation of QED was pioneered by Freeman Dyson, Richard Feynman, Julian Schwinger, and Sin-Itiro Tomonaga, three of whom won the Nobel Prize for their work. In this book, physicist and historian Silvan Schweber tells the story of these four physicists, blending discussions of their scientific work with fascinating biographical sketches. Setting the achievements of these four men in context, Schweber begins with an account of the early work done by physicists such as Dirac and Jordan, and describes the gathering of eminent theorists at Shelter Island in 1947, the meeting that heralded the new era of QED. The rest of his narrative comprises individual biographies of the four physicists, discussions of their major contributions, and the story of the scientific community in which they worked. Throughout, Schweber draws on his technical expertise to offer a lively and lucid explanation of how this theory was finally established as the appropriate way to describe the atomic and subatomic realms. |
the feynman lectures on physics volume 1: Elementary Particles and the Laws of Physics Richard Phillips Feynman, Steven Weinberg, 1999-07-13 A fascinating and accessible book by Nobel laureates Richard Feynman and Steven Weinberg. |
the feynman lectures on physics volume 1: Perfectly Reasonable Deviations from the Beaten Track Richard P. Feynman, 2008-08-01 I'm an explorer, OK? I like to find out! -- One of the towering figures of twentieth-century science, Richard Feynman possessed a curiosity that was the stuff of legend. Even before he won the Nobel Prize in 1965, his unorthodox and spellbinding lectures on physics secured his reputation amongst students and seekers around the world. It was his outsized love for life, however, that earned him the status of an American cultural icon-here was an extraordinary intellect devoted to the proposition that the thrill of discovery was matched only by the joy of communicating it to others. In this career-spanning collection of letters, many published here for the first time, we are able to see this side of Feynman like never before. Beginning with a short note home in his first days as a graduate student, and ending with a letter to a stranger seeking his advice decades later, Perfectly Reasonable Deviations from the Beaten Track covers a dazzling array of topics and themes, scientific developments and personal histories. With missives to and from scientific luminaries, as well as letters to and from fans, family, students, crackpots, as well as everyday people eager for Feynman's wisdom and counsel, the result is a wonderful de facto guide to life, and eloquent testimony to the human quest for knowledge at all levels. Feynman once mused that people are entertained' enormously by being allowed to understand a little bit of something they never understood before. As edited and annotated by his daughter, Michelle, these letters not only allow us to better grasp the how and why of Feynman's enduring appeal, but also to see the virtues of an inquiring eye in spectacular fashion. Whether discussing the Manhattan Project or developments in quantum physics, the Challenger investigation or grade-school textbooks, the love of his wife or the best way to approach a problem, his dedication to clarity, grace, humor, and optimism is everywhere evident.. |
the feynman lectures on physics volume 1: Exercises in Introductory Physics Robert B. Leighton, Rochus E. Vogt, 1969 Exercises for use with vol. I of the Feyman lectures in physics |
the feynman lectures on physics volume 1: Fundamentals of Physics II R. Shankar, 2016-01-01 Explains the fundamental concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Provides an introduction for college-level students of physics, chemistry, and engineering, for AP Physics students, and for general readers interested in advances in the sciences. In volume II, Shankar explains essential concepts, including electromagnetism, optics, and quantum mechanics. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. |
the feynman lectures on physics volume 1: Quantum mechanics Richard Phillips Feynman, Robert B. Leighton, Matthew Linzee Sands, 1989-01-01 |
the feynman lectures on physics volume 1: Collective Electrodynamics Carver A. Mead, 2002-07-26 In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics—collective electrodynamics—that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same—that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman. |
the feynman lectures on physics volume 1: The Pleasure of Finding Things Out Richard P. Feynman, 2005-04-06 This collection from scientist and Nobel Peace Prize winner highlights the achievements of a man whose career reshaped the world's understanding of quantum electrodynamics. The Pleasure of Finding Things Out is a magnificent treasury of the best short works of Richard P. Feynman-from interviews and speeches to lectures and printed articles. A sweeping, wide-ranging collection, it presents an intimate and fascinating view of a life in science-a life like no other. From his ruminations on science in our culture to his Nobel Prize acceptance speech, this book will fascinate anyone interested in the world of ideas. |
the feynman lectures on physics volume 1: Atomic Physics Max Born, Roger John Blin-Stoyle, J. M. Radcliffe, 1989-06-01 Nobel Laureate's lucid treatment of kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic structure and spectral lines, much more. Over 40 appendices, bibliography. |
the feynman lectures on physics volume 1: "Surely You're Joking, Mr. Feynman!": Adventures of a Curious Character Richard P. Feynman, 2018-02-06 One of the most famous science books of our time, the phenomenal national bestseller that buzzes with energy, anecdote and life. It almost makes you want to become a physicist (Science Digest). Richard P. Feynman, winner of the Nobel Prize in physics, thrived on outrageous adventures. In this lively work that “can shatter the stereotype of the stuffy scientist” (Detroit Free Press), Feynman recounts his experiences trading ideas on atomic physics with Einstein and cracking the uncrackable safes guarding the most deeply held nuclear secrets—and much more of an eyebrow-raising nature. In his stories, Feynman’s life shines through in all its eccentric glory—a combustible mixture of high intelligence, unlimited curiosity, and raging chutzpah. Included for this edition is a new introduction by Bill Gates. |
the feynman lectures on physics volume 1: How to Teach Physics to Your Dog Chad Orzel, 2010-12-07 Original publication and copyright date: 2009. |
the feynman lectures on physics volume 1: A Course in Modern Mathematical Physics Peter Szekeres, 2004-12-16 This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today. |
the feynman lectures on physics volume 1: Quick Calculus Daniel Kleppner, Norman Ramsey, 1991-01-16 Quick Calculus 2nd Edition A Self-Teaching Guide Calculus is essential for understanding subjects ranging from physics and chemistry to economics and ecology. Nevertheless, countless students and others who need quantitative skills limit their futures by avoiding this subject like the plague. Maybe that's why the first edition of this self-teaching guide sold over 250,000 copies. Quick Calculus, Second Edition continues to teach the elementary techniques of differential and integral calculus quickly and painlessly. Your calculus anxiety will rapidly disappear as you work at your own pace on a series of carefully selected work problems. Each correct answer to a work problem leads to new material, while an incorrect response is followed by additional explanations and reviews. This updated edition incorporates the use of calculators and features more applications and examples. .makes it possible for a person to delve into the mystery of calculus without being mystified. --Physics Teacher |
the feynman lectures on physics volume 1: The Second Kind of Impossible Paul Steinhardt, 2020-01-07 *Shortlisted for the 2019 Royal Society Insight Investment Science Book Prize* One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure. When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature). |
the feynman lectures on physics volume 1: QED Richard P. Feynman, 2014-10-26 Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers. |
the feynman lectures on physics volume 1: Selected Papers of Richard Feynman Richard Phillips Feynman, 2000 Selected articles on quantum chemistry, classical and quantum electrodynamics, path integrals and operator calculus, liquid helium, quantum gravity and computer theory |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics Richard Phillips Feynman, 1969 |
the feynman lectures on physics volume 1: Feynman And Computation Anthony Hey, 2018-03-08 Computational properties of use to biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices. |
the feynman lectures on physics volume 1: Classic Feynman Richard Phillips Feynman, Ralph Leighton, 2006 An omnibus edition of classic adventure tales by the Nobel Prize-winning physicist includes his exchanges with Einstein and Bohr, ideas about gambling with Nick the Greek, and solution to the Challenger disaster, in a volume complemented by an hour-long audio CD of his 1978 Los Alamos from Below lecture. 30,000 first printing. |
the feynman lectures on physics volume 1: Six Easy Pieces Richard P. Feynman, 1996-04-10 Richard P. Feynman (1918–1988) was widely recognized as the most creative physicist of the post–World War II period. His career was extraordinarily expansive. From his contributions to the development of the atomic bomb a Los Alamos during World War II to his work in quantum electrodynamics, for which he was awarded the Nobel Prize in 1965, Feynman was celebrated for his brilliant and irreverent approach to physics.It was Feynman's outrageous and scintillating method of teaching that earned him legendary status among students and professors of physics. From 1961–1963, Feynman, at the California Institute of Technology, delivered a series of lectures that revolutionized the teaching of physics around the world. Six Easy Pieces, taken from the famous Lectures on Physics, represents the most accessible material from this series. In these six chapters, Feynman introduces the general reader to the following topics: atoms, basic physics, the relationship of physics to other topics, energy, gravitation, and quantum force. With his dazzling and inimitable wit, Feynman presents each discussion without equations or technical jargon.Readers will remember how—using ice water and rubber—Feynman demonstrated with stunning simplicity to a nationally televised audience the physics of the 1986 Challenger disaster. It is precisely this ability—the clear and direct illustration of complex theories—that made Richard Feynman one of the most distinguished educators in the world. Filled with wonderful examples and clever illustrations, Six Easy Pieces is the ideal introduction to the fundamentals of physics by one of the most admired and accessible scientists of our time. |
the feynman lectures on physics volume 1: The Very Best of the Feynman Lectures Richard Phillips Feynman (Physicist, United States), 2005 |
the feynman lectures on physics volume 1: The Feynman Lectures on Physics Richard Phillips Feynman, 2002-10-01 Perseus Publishing is proud to announce the latest volumes in its series of recorded lectures by the late Richard P. Feynman, lectures originally delivered to his physics students at Caltech and later fashioned by the author into his classic textbook Lectures on Physics.Volume 18 (Feynman on Flow) includes a discussion of tensors, reflection from surfaces, magnetic materials, elasticity, and the flow of both wet and dry water. |
the feynman lectures on physics volume 1: The Feynman lectures on physics Richard Phillips Feynman, 1963 |
Richard Feynman - Wikipedia
He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, and in …
Richard Feynman | Biography, Nobel Prize, Books, & Facts
May 7, 2025 · Richard Feynman (born May 11, 1918, New York, New York, U.S.—died February 15, 1988, Los Angeles, California) was an American theoretical physicist who was widely …
The Feynman Lectures on Physics
Now, anyone with internet access and a web browser can enjoy reading 2 a high quality up-to-date copy of Feynman's legendary lectures. This edition has been designed for ease of reading …
The Official Site of Richard Feynman
Richard Phillips Feynman was born in New York City in 1918 and grew up in Far Rockaway, Queens. He attended the Massachusetts Institute of Technology as an undergraduate, and he …
Richard P. Feynman – Biographical - NobelPrize.org
Richard P. Feynman was born in New York City on the 11th May 1918. He studied at the Massachusetts Institute of Technology where he obtained his B.Sc. in 1939 and at Princeton …
Richard Feynman – Scientist. Teacher. Raconteur. Musician
This website is dedicated to Richard P. Feynman (1918-1988), scientist, teacher, raconteur, and drummer. He assisted in the development of the atomic bomb, expanded the understanding of …
Richard Feynman - New World Encyclopedia
Richard Phillips Feynman (May 11, 1918 – February 15, 1988; IPA: /ˈfaɪnmən/) was an American physicist known for expanding the theory of quantum electrodynamics, the physics of the …
Everything you need to know about Richard Feynman and his …
May 21, 2024 · Richard Phillips Feynman (May 11, 1918 – February 15, 1988) was an American theoretical physicist renowned for his contributions to quantum mechanics, quantum …
Feynman Online -- The Official Feynman Website
Richard Feynman, scientist, teacher, raconteur, and musician. He assisted in the development of the atomic bomb, expanded the understanding of quantumelectrodynamics, translated Mayan …
Richard Feynman | Nobel-prizewinning theoretical physicist - New Scientist
Richard Feynman was a Nobel-prizewinning US theoretical physicist. Famed for his brilliant mind and mercurial personality, his main work was in quantum physics and particle physics,...
Richard Feynman - Wikipedia
He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid …
Richard Feynman | Biography, Nobel Prize, Books, & Facts
May 7, 2025 · Richard Feynman (born May 11, 1918, New York, New York, U.S.—died February 15, 1988, Los Angeles, California) was an American theoretical physicist who was widely …
The Feynman Lectures on Physics
Now, anyone with internet access and a web browser can enjoy reading 2 a high quality up-to-date copy of Feynman's legendary lectures. This edition has been designed for ease of reading …
The Official Site of Richard Feynman
Richard Phillips Feynman was born in New York City in 1918 and grew up in Far Rockaway, Queens. He attended the Massachusetts Institute of Technology as an undergraduate, and he …
Richard P. Feynman – Biographical - NobelPrize.org
Richard P. Feynman was born in New York City on the 11th May 1918. He studied at the Massachusetts Institute of Technology where he obtained his B.Sc. in 1939 and at Princeton …