Statistical Methods For The Social Sciences

Advertisement



  statistical methods for the social sciences: Statistical Methods for the Social Sciences Alan Agresti, Barbara Finlay, 2013-07-30 The fourth edition has an even stronger emphasis on concepts and applications, with greater attention to real data both in the examples and exercises. The mathematics is still downplayed, in particular probability, which is all too often a stumbling block for students. On the other hand, the text is not a cookbook. Reliance on an overly simplistic recipe-based approach to statistics is not the route to good statistical practice. Changes in the Fourth Edition: Since the first edition, the increase in computer power coupled with the continued improvement and accessibility of statistical software has had a major impact on the way social scientists analyze data. Because of this, this book does not cover the traditional shortcut hand-computational formulas and approximations. The presentation of computationally complex methods, such as regression, emphasizes interpretation of software output rather than the formulas for performing the analysis. Teh text contains numerous sample printouts, mainly in the style of SPSS and occasionaly SAS, both in chapter text and homework problems. This edition also has an appendix explaining how to apply SPSS and SAS to conduct the methods of each chapter and a website giving links to information about other software.
  statistical methods for the social sciences: Statistical Methods for the Social Sciences, Global Edition Alan Agresti, Barbara Finlay, 2018-04-24 For courses in Statistical Methods for the Social Sciences. Statistical methods applied to social sciences, made accessible to all through an emphasis on concepts Statistical Methods for the Social Sciences introduces statistical methods to students majoring in social science disciplines. With an emphasis on concepts and applications, this book assumes no previous knowledge of statistics and only a minimal mathematical background. It contains sufficient material for a two-semester course. The 5th Edition uses examples and exercises with a variety of real data. It includes more illustrations of statistical software for computations and takes advantage of the outstanding applets to explain key concepts, such as sampling distributions and conducting basic data analyses. It continues to downplay mathematics--often a stumbling block for students--while avoiding reliance on an overly simplistic recipe-based approach to statistics.
  statistical methods for the social sciences: Statistical Methods for the Social and Behavioural Sciences David B. Flora, 2017-12-11 Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
  statistical methods for the social sciences: Statistical Methods for the Social Sciences Agresti, 2006-01-01
  statistical methods for the social sciences: Making Sense of Statistical Methods in Social Research Keming Yang, 2010-03-25 Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
  statistical methods for the social sciences: Using Statistical Methods in Social Science Research Soleman H. Abu-Bader, 2011-07-01 In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
  statistical methods for the social sciences: Statistical Methods for the Social Sciences, Global Edition Alan Agresti, 2023-12-26 For courses in Statistical Methods for the Social Sciences . Statistical methods applied to social sciences, made accessible to all through an emphasis on concepts Statistical Methods for the Social Sciences introduces statistical methods to students majoring in social science disciplines. With an emphasis on concepts and applications, this book assumes you have no previous knowledge of statistics and only a minimal mathematical background. It contains sufficient material for a two-semester course. The 6th Edition gives you examples and exercises with a variety of real data. It includes more illustrations of statistical software for computations and takes advantage of the outstanding applets to explain key concepts, such as sampling distributions and conducting basic data analyses. It continues to downplay mathematics-often a stumbling block for students-while avoiding reliance on an overly simplistic recipe-based approach to statistics.
  statistical methods for the social sciences: Statistical Methods in Social Science Research S P Mukherjee, Bikas K Sinha, Asis Kumar Chattopadhyay, 2018-10-05 This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
  statistical methods for the social sciences: Statistical Methods for the Social Sciences: Pearson New International Edition Alan Agresti, Barbara Finlay, 2013-08-27 The book presents an introduction to statistical methods for students majoring in social science disciplines. No previous knowledge of statistics is assumed, and mathematical background is assumed to be minimal (lowest-level high-school algebra). The book contains sufficient material for a two-semester sequence of courses. Such sequences are commonly required of social science graduate students in sociology, political science, and psychology. Students in geography, anthropology, journalism, and speech also are sometimes required to take at least one statistics course. Datasets and other resources (where applicable) for this book are available here.
  statistical methods for the social sciences: Statistics for the Social Sciences Russell T. Warne, 2020-12-17 The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
  statistical methods for the social sciences: Using Statistical Methods in Social Science Research Soleman H. Abu-Bader, 2011-06 In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
  statistical methods for the social sciences: Quantitative Methods for the Social Sciences Daniel Stockemer, 2018-11-19 This textbook offers an essential introduction to survey research and quantitative methods. Building on the premise that statistical methods need to be learned in a practical fashion, the book guides students through the various steps of the survey research process and helps to apply those steps toward a real example. In detail, the textbook introduces students to the four pillars of survey research and quantitative analysis: (1) the importance of survey research, (2) preparing a survey, (3) conducting a survey and (4) analyzing a survey. Students are shown how to create their own questionnaire based on some theoretically derived hypotheses to achieve empirical findings for a solid dataset. Lastly, they use said data to test their hypotheses in a bivariate and multivariate realm. The book explains the theory, rationale and mathematical foundations of these tests. In addition, it provides clear instructions on how to conduct the tests in SPSS and Stata. Given the breadth of its coverage, the textbook is suitable for introductory statistics, survey research or quantitative methods classes in the social sciences.
  statistical methods for the social sciences: Statistical Modeling and Inference for Social Science Sean Gailmard, 2014-06-09 Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
  statistical methods for the social sciences: Statistical Methods in the Social Sciences , 1968
  statistical methods for the social sciences: Statistical Methods in the Social Sciences , 1968
  statistical methods for the social sciences: Propensity Score Analysis Shenyang Guo, Mark W. Fraser, 2015 Provides readers with a systematic review of the origins, history, and statistical foundations of Propensity Score Analysis (PSA) and illustrates how it can be used for solving evaluation and causal-inference problems.
  statistical methods for the social sciences: Statistics in the Social Sciences Stanislav Kolenikov, Lori Thombs, Douglas Steinley, 2010-02-22 A one-of-a-kind compilation of modern statistical methods designed to support and advance research across the social sciences Statistics in the Social Sciences: Current Methodological Developments presents new and exciting statistical methodologies to help advance research and data analysis across the many disciplines in the social sciences. Quantitative methods in various subfields, from psychology to economics, are under demand for constant development and refinement. This volume features invited overview papers, as well as original research presented at the Sixth Annual Winemiller Conference: Methodological Developments of Statistics in the Social Sciences, an international meeting that focused on fostering collaboration among mathematical statisticians and social science researchers. The book provides an accessible and insightful look at modern approaches to identifying and describing current, effective methodologies that ultimately add value to various fields of social science research. With contributions from leading international experts on the topic, the book features in-depth coverage of modern quantitative social sciences topics, including: Correlation Structures Structural Equation Models and Recent Extensions Order-Constrained Proximity Matrix Representations Multi-objective and Multi-dimensional Scaling Differences in Bayesian and Non-Bayesian Inference Bootstrap Test of Shape Invariance across Distributions Statistical Software for the Social Sciences Statistics in the Social Sciences: Current Methodological Developments is an excellent supplement for graduate courses on social science statistics in both statistics departments and quantitative social sciences programs. It is also a valuable reference for researchers and practitioners in the fields of psychology, sociology, economics, and market research.
  statistical methods for the social sciences: Applied Statistical Methods William Lee Carlson, Betty Thorne, 1997 This book describes and explains the entire process of designing and building a distributed object application with the VisualAge Smalltalk Distributed feature. This book contains an overview of the features and architecture of SmallTalk's Distributed feature; sample application components with supporting documentation to illustrate design and coding; and recommendations for building distributed object applications with VisualAge. Learn how to set up the development environment, and special considerations for testing, run-time configurations, optimization and performance tuning. For software development managers, designers and others planning to develop client/server and peer-to-peer applications with distributed objects using VisualAge.
  statistical methods for the social sciences: The SAGE Encyclopedia of Social Science Research Methods Michael Lewis-Beck, Alan E Bryman, Tim Futing Liao, 2004 Featuring over 900 entries, this resource covers all disciplines within the social sciences with both concise definitions & in-depth essays.
  statistical methods for the social sciences: Statistical Methods for Social Scientists Eric A. Hanushek, John E. Jackson, 2013-10-22 The aspects of this text which we believe are novel, at least in degree, include: an effort to motivate different sections with practical examples and an empirical orientation; an effort to intersperse several easily motivated examples throughout the book and to maintain some continuity in these examples; and the extensive use of Monte Carlo simulations to demonstrate particular aspects of the problems and estimators being considered. In terms of material being presented, the unique aspects include the first chapter which attempts to address the use of empirical methods in the social sciences, the seventh chapter which considers models with discrete dependent variables and unobserved variables. Clearly these last two topics in particular are quite advanced--more advanced than material that is currently available on the subject. These last two topics are also currently experiencing rapid development and are not adequately described in most other texts.
  statistical methods for the social sciences: Statistical Methods in the Atmospheric Sciences Daniel S. Wilks, 2011-07-04 Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. - Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting - Many worked examples - End-of-chapter exercises, with answers provided
  statistical methods for the social sciences: Statistical Power Analysis for the Social and Behavioral Sciences Xiaofeng Steven Liu, 2013-11-07 This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
  statistical methods for the social sciences: Student Solutions Manual for Statistical Methods for the Social Sciences Alan Agresti, Barbara Finlay, 2008-04
  statistical methods for the social sciences: Data Analytics for the Social Sciences G. David Garson, 2021-11-30 Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the caret package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two Quick Start exercises designed to allow quick immersion in chapter topics, followed by In Depth coverage. Data are available for all examples and runnable R code is provided in a Command Summary. An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, books within the book on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
  statistical methods for the social sciences: Quantitative Social Science Kosuke Imai, Lori D. Bougher, 2021-03-16 Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a translation of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place--
  statistical methods for the social sciences: Applied Multivariate Statistics for the Social Sciences Keenan A. Pituch, James P. Stevens, 2015-12-07 Now in its 6th edition, the authoritative textbook Applied Multivariate Statistics for the Social Sciences, continues to provide advanced students with a practical and conceptual understanding of statistical procedures through examples and data-sets from actual research studies. With the added expertise of co-author Keenan Pituch (University of Texas-Austin), this 6th edition retains many key features of the previous editions, including its breadth and depth of coverage, a review chapter on matrix algebra, applied coverage of MANOVA, and emphasis on statistical power. In this new edition, the authors continue to provide practical guidelines for checking the data, assessing assumptions, interpreting, and reporting the results to help students analyze data from their own research confidently and professionally. Features new to this edition include: NEW chapter on Logistic Regression (Ch. 11) that helps readers understand and use this very flexible and widely used procedure NEW chapter on Multivariate Multilevel Modeling (Ch. 14) that helps readers understand the benefits of this newer procedure and how it can be used in conventional and multilevel settings NEW Example Results Section write-ups that illustrate how results should be presented in research papers and journal articles NEW coverage of missing data (Ch. 1) to help students understand and address problems associated with incomplete data Completely re-written chapters on Exploratory Factor Analysis (Ch. 9), Hierarchical Linear Modeling (Ch. 13), and Structural Equation Modeling (Ch. 16) with increased focus on understanding models and interpreting results NEW analysis summaries, inclusion of more syntax explanations, and reduction in the number of SPSS/SAS dialogue boxes to guide students through data analysis in a more streamlined and direct approach Updated syntax to reflect newest versions of IBM SPSS (21) /SAS (9.3) A free online resources site at www.routledge.com/9780415836661 with data sets and syntax from the text, additional data sets, and instructor’s resources (including PowerPoint lecture slides for select chapters, a conversion guide for 5th edition adopters, and answers to exercises) Ideal for advanced graduate-level courses in education, psychology, and other social sciences in which multivariate statistics, advanced statistics, or quantitative techniques courses are taught, this book also appeals to practicing researchers as a valuable reference. Pre-requisites include a course on factorial ANOVA and covariance; however, a working knowledge of matrix algebra is not assumed.
  statistical methods for the social sciences: New Statistical Procedures for the Social Sciences Rand R. Wilcox, 1987 First Published in 1987. Routledge is an imprint of Taylor & Francis, an informa company.
  statistical methods for the social sciences: Sampling of Populations Paul S. Levy, Stanley Lemeshow, 2013-06-07 A trusted classic on the key methods in population sampling—now in a modernized and expanded new edition Sampling of Populations, Fourth Edition continues to serve as an all-inclusive resource on the basic and most current practices in population sampling. Maintaining the clear and accessible style of the previous edition, this book outlines the essential statistical methodsfor survey design and analysis, while also exploring techniques that have developed over the past decade. The Fourth Edition successfully guides the reader through the basic concepts and procedures that accompany real-world sample surveys, such as sampling designs, problems of missing data, statistical analysis of multistage sampling data, and nonresponse and poststratification adjustment procedures. Rather than employ a heavily mathematical approach, the authors present illustrative examples that demonstrate the rationale behind common steps in the sampling process, from creating effective surveys to analyzing collected data. Along with established methods, modern topics are treated through the book's new features, which include: A new chapter on telephone sampling, with coverage of declining response rates, the creation of do not call lists, and the growing use of cellular phones A new chapter on sample weighting that focuses on adjustments to weight for nonresponse, frame deficiencies, and the effects of estimator instability An updated discussion of sample survey data analysis that includes analytic procedures for estimation and hypothesis testing A new section on Chromy's widely used method of taking probability proportional to size samples with minimum replacement of primary sampling units An expanded index with references on the latest research in the field All of the book's examples and exercises can be easily worked out using various software packages including SAS, STATA, and SUDAAN, and an extensive FTP site contains additional data sets. With its comprehensive presentation and wealth of relevant examples, Sampling of Populations, Fourth Edition is an ideal book for courses on survey sampling at the upper-undergraduate and graduate levels. It is also a valuable reference for practicing statisticians who would like to refresh their knowledge of sampling techniques.
  statistical methods for the social sciences: Statistical Methods Rudolf J. Freund, William J. Wilson, 2003-01-07 This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
  statistical methods for the social sciences: Basic Statistics for Social Research Robert A. Hanneman, Augustine J. Kposowa, Mark D. Riddle, 2012-12-04 A core statistics text that emphasizes logical inquiry, not math Basic Statistics for Social Research teaches core general statistical concepts and methods that all social science majors must master to understand (and do) social research. Its use of mathematics and theory are deliberately limited, as the authors focus on the use of concepts and tools of statistics in the analysis of social science data, rather than on the mathematical and computational aspects. Research questions and applications are taken from a wide variety of subfields in sociology, and each chapter is organized around one or more general ideas that are explained at its beginning and then applied in increasing detail in the body of the text. Each chapter contains instructive features to aid students in understanding and mastering the various statistical approaches presented in the book, including: Learning objectives Check quizzes after many sections and an answer key at the end of the chapter Summary Key terms End-of-chapter exercises SPSS exercises (in select chapters) Ancillary materials for both the student and the instructor are available and include a test bank for instructors and downloadable video tutorials for students.
  statistical methods for the social sciences: Relative Distribution Methods in the Social Sciences Mark S. Handcock, Martina Morris, 2006-05-10 This monograph presents methods for full comparative distributional analysis based on the relative distribution. This provides a general integrated framework for analysis, a graphical component that simplifies exploratory data analysis and display, a statistically valid basis for the development of hypothesis-driven summary measures, and the potential for decomposition - enabling the examination of complex hypotheses regarding the origins of distributional changes within and between groups. Written for data analysts and those interested in measurement, the text can also serve as a textbook for a course on distributional methods.
  statistical methods for the social sciences: The Behavioral and Social Sciences National Research Council, Division of Behavioral and Social Sciences and Education, Commission on Behavioral and Social Sciences and Education, Committee on Basic Research in the Behavioral and Social Sciences, 1988-02-01 This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research.
  statistical methods for the social sciences: Statistical Methods for Meta-Analysis Larry V. Hedges, Ingram Olkin, 2014-06-28 The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.
  statistical methods for the social sciences: Social Science Research Anol Bhattacherjee, 2012-04-01 This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
  statistical methods for the social sciences: From Numbers to Words Susan Morgan, Tom Reichert, Tyler R. Harrison, 2016-07-22 This invaluable resource guides readers through the process of creating scholarly, publishable prose from the results of quantitative experiments and investigations. It delves into the issues commonly encountered when reporting the results of statistical experiments and investigations, and provides instruction re the representation of these results in text and visual formats. This unique research companion serves as a must-have reference for advanced students doing quantitative research and working with statistics, with the goal of writing up and publishing their findings; it also serves as a useful refresher for experienced researchers.
  statistical methods for the social sciences: Data Analysis for the Social Sciences Douglas Bors, 2018-01-08 ′This book fosters in-depth understanding of the logic underpinning the most common statistical tests within the behavioural sciences. By emphasising the shared ground between these tests, the author provides crucial scaffolding for students as they embark upon their research journey.′ —Ruth Horry, Psychology, Swansea University ′This unique text presents the conceptual underpinnings of statistics as well as the computation and application of statistics to real-life situations--a combination rarely covered in one book. A must-have for students learning statistical techniques and a go-to handbook for experienced researchers.′ —Barbra Teater, Social Work, College of Staten Island, City University of New York Accessible, engaging, and informative, this book will help any social science student approach statistics with confidence. With a well-paced and well-judged integrated approach rather than a simple linear trajectory, this book progresses at a realistic speed that matches the pace at which statistics novices actually learn. Packed with global, interdisciplinary examples that ground statistical theory and concepts in real-world situations, it shows students not only how to apply newfound knowledge using IBM SPSS Statistics, but also why they would want to. Spanning statistics basics like variables, constants, and sampling through to t-tests, multiple regression and factor analysis, it builds statistical literacy while also covering key research principles like research questions, error types and results reliability. It shows you how to: Describe data with graphs, tables, and numbers Calculate probability and value distributions Test a priori and post hoc hypotheses Conduct Chi-squared tests and observational studies Structure ANOVA, ANCOVA, and factorial designs Supported by lots of visuals and a website with interactive demonstrations, author video, and practice datasets, this book is the student-focused companion to support students through their statistics journeys.
  statistical methods for the social sciences: Doing Quantitative Research in the Social Sciences Thomas R Black, 1999-03-30 This original textbook provides a comprehensive and integrated approach to using quantitative methods in the social sciences. Thomas R Black guides the student and researcher through the minefield of potential problems that may be confronted, and it is this emphasis on the practical that distinguishes his book from others which focus exclusively on either research design and measurement or statistical methods. Focusing on the design and execution of research, key topics such as planning, sampling, the design of measuring instruments, choice of statistical text and interpretation of results are examined within the context of the research process. In a lively and accessible style, the student is introduced to researc design issues alongside statistical procedures and encouraged to develop analytical and decision-making skills.
  statistical methods for the social sciences: Statistics for the Social Sciences R. Mark Sirkin, 1999-05-14 Do your students lack confidence in handling quantitative work? Do they get confused about how to enter statistical data on SAS and SPSS programs? This Second Edition of Mark Sirkin's popular textbook is the solution for these dilemmas. The book progresses from concepts that require little computational work to the more demanding. It emphasizes utilization so that students appreciate the usefulness of statistics and shows how the interpretation of data is related to the methods by which data was obtained. The author includes coverage of the scientific method, levels of measurement and the interpretation of tables.
  statistical methods for the social sciences: Factor Analysis Jae-On Kim, Charles W. Mueller, 1978-11 Describes various commonly used methods of initial factoring and factor rotation. In addition to a full discussion of exploratory factor analysis, confirmatory factor analysis and various methods of constructing factor scales are also presented.
  statistical methods for the social sciences: Essential Mathematics for Political and Social Research Jeff Gill, 2006-04-24 More than ever before, modern social scientists require a basic level of mathematical literacy, yet many students receive only limited mathematical training prior to beginning their research careers. This textbook addresses this dilemma by offering a comprehensive, unified introduction to the essential mathematics of social science. Throughout the book the presentation builds from first principles and eschews unnecessary complexity. Most importantly, the discussion is thoroughly and consistently anchored in real social science applications, with more than 80 research-based illustrations woven into the text and featured in end-of-chapter exercises. Students and researchers alike will find this first-of-its-kind volume to be an invaluable resource.--BOOK JACKET.
Statistical Methods For The Social Sciences, Fifth Edition, Global …
When Barbara Finlay and I undertook the first edition of this book nearly four decades ago, our goal was to introduce statistical methods in a style that emphasized their concepts and their application to the social sciences rather than the mathe-matics and computational details …

STATISTICAL METHODS FOR THE SOCIAL SCIENCES - JSSCACS
some of the most commonly used statistical methods. Our goal is to introduce the basic theory without getting too involved in mathematical detail, and thus to enable a larger proportion of the …

Statistical Methods for - Pearson Deutschland
Statistical methods applied to social sciences, made accessible to all through an emphasis on concepts Statistical Methods for the Social Sciences introduces statistical methods to students …

Statistical Methods for the Social and Behavioral Sciences - JSTOR
Statistical Methods for the Social and Behavioral Sciences consists of 50 chapters organized into 9 parts.

Statistical Methods in Social Science Research - Springer
evidences about social phenomena, we have to use probabilistic models and sta-tistical tools to make inductive inferences. It is this recognition that can explain two generic observations. The …

Statistical Modeling and Inference for Social Science
Statistical Modeling and Inference for Social Science This book provides an introduction to probability theory, statistical inference, and statistical modeling for social science res earchers …

STATISTICS IN THE SOCIAL SCIENCES - Wiley Online Library
This book is aimed at a wide spectrum of researchers and students who are concerned with current statistical methodology applied in the social sciences.

Statistical Methods for the Social Sciences, Global Edition
Reporting the P-value has the advantage that the reader can tell whether the result is significant at any level. The P-values of 0.049 and 0.001 are both “significant at the 0.05 level,” but the …

Statistics for the Behavioral and Social Sciences - Pearson
of the authors’ Statistics for the behavioral and social sciences, c2011. Identifiers: LCCN 2017050636| ISBN 9780205989065 | ISBN 0205989063 Subjects: LCSH: Social …

Statistics for the Social Sciences
Statistics for Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their eld of study. By using the General Linear Model …

Statistical Methods in the Social Sciences - eScholarship
pronouncing every misalignment as a sign of de ciency or complexity of the social world, this dissertation centers the social sciences. The chapters tackle three topics central to social …

METHODS: REVIEWS AND NOTICES SAGE - Series - JSTOR
This series provides professionals and students with inexpensive texts describing the major statistical methods used in applied social research.

Quantitative Methods for the Social Sciences - Springer
statistical programs: the Statistical Package for the Social Sciences (SPSS) and Stata. In the present edition, we seek to introduce quantitative methods for the social sciences using a third …

Statistical Tools for Social Sciences: A Comprehensive Review
Understanding the importance of statistical tools in social science research requires recognition of their role in addressing research questions, testing hypotheses, and making informed decisions …

The Uses of Statistics in the Social Sciences - JSTOR
The Uses o? Statistics in the Social Sciences* By W. L. Crum Cambridge, Mass. Statistics and statistical methods have become so common a tool of the scientist, both for conducting his …

PART I. MODELS AND METHODS IN THE SOCIAL SCIENCES
Mathematical models and statistical methods can be powerful – you can fit a linear regression model to just about anything – but one needs some sense of what the models mean in context. …

Introduction to Quantitative Data Analysis in the Behavioral and …
statistical tests on all combinations of the data, but most of those tests have no relevance or validity regardless of the actual research question. This book strives to explain the when, why, …

The Uses and Limitations of the Statistical Method in the Social …
STATISTICAL METHOD IN THE SOCIAL SCIENCES By CHARLES A. ELLWOOD PROFESSOR OP SOCIOLOGY, DUKE UNIVERSITY CONTRARY statements as to the scien-tific value of …

Interpretive Quantitative Methods for the Social Sciences
quantitative methods. Of course statistical methods are not the only valid mode of inquiry, and each of the social sciences also embraces its own theoretical and qualitative approaches. But, …

Statistical Methods For The Social Sciences, Fifth Edition…
When Barbara Finlay and I undertook the first edition of this book nearly …

STATISTICAL METHODS FOR THE SOCIAL SCIENCES - JSSC…
some of the most commonly used statistical methods. Our goal is to …

Statistical Methods for - Pearson Deutschland
Statistical methods applied to social sciences, made accessible to all …

Statistical Methods for the Social and Behavioral Scienc…
Statistical Methods for the Social and Behavioral Sciences consists of 50 …

Volume 1 for the Social and Behavioral Sciences The Cam…
The Cambridge Handbook of Research Methods and Statistics for the Social …