Advertisement
programming machine learning from coding to deep learning: Programming Machine Learning Paolo Perrotta, 2020-03-31 You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain. |
programming machine learning from coding to deep learning: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
programming machine learning from coding to deep learning: Programming PyTorch for Deep Learning Ian Pointer, 2019-09-20 Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud |
programming machine learning from coding to deep learning: Mathematics and Programming for Machine Learning with R William Claster, 2020-10-26 Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms |
programming machine learning from coding to deep learning: Deep Learning with Python Francois Chollet, 2017-11-30 Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance |
programming machine learning from coding to deep learning: Approaching (Almost) Any Machine Learning Problem Abhishek Thakur, 2020-07-04 This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub |
programming machine learning from coding to deep learning: Grokking Deep Learning Andrew W. Trask, 2019-01-23 Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide |
programming machine learning from coding to deep learning: Deep Learning with PyTorch Luca Pietro Giovanni Antiga, Eli Stevens, Thomas Viehmann, 2020-07-01 “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production |
programming machine learning from coding to deep learning: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
programming machine learning from coding to deep learning: Practical Deep Learning Ronald T. Kneusel, 2021-02-23 Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about artificial intelligence and machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects. |
programming machine learning from coding to deep learning: Clojure for Machine Learning Akhil Wali, 2014-04 A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated. This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage. |
programming machine learning from coding to deep learning: Codeless Deep Learning with KNIME Kathrin Melcher, Rosaria Silipo, 2020-11-27 Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key FeaturesBecome well-versed with KNIME Analytics Platform to perform codeless deep learningDesign and build deep learning workflows quickly and more easily using the KNIME GUIDiscover different deployment options without using a single line of code with KNIME Analytics PlatformBook Description KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It’ll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you’ll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You’ll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you’ll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you’ll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learnUse various common nodes to transform your data into the right structure suitable for training a neural networkUnderstand neural network techniques such as loss functions, backpropagation, and hyperparametersPrepare and encode data appropriately to feed it into the networkBuild and train a classic feedforward networkDevelop and optimize an autoencoder network for outlier detectionImplement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examplesDeploy a trained deep learning network on real-world dataWho this book is for This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book. |
programming machine learning from coding to deep learning: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
programming machine learning from coding to deep learning: AI and Machine Learning for Coders Laurence Moroney, 2020-10-01 If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving |
programming machine learning from coding to deep learning: Deep Learning with PyTorch Vishnu Subramanian, 2018-02-23 Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected. |
programming machine learning from coding to deep learning: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview. |
programming machine learning from coding to deep learning: Learning Deep Learning Magnus Ekman, 2021-07-19 NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals. -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us. -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
programming machine learning from coding to deep learning: Python Machine Learning Wei-Meng Lee, 2019-04-04 Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level. |
programming machine learning from coding to deep learning: Machine Learning and Deep Learning Using Python and TensorFlow Shailendra Kadre, Venkata Reddy Konasani, 2021-04-29 Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory |
programming machine learning from coding to deep learning: Hands-On Machine Learning with C++ Kirill Kolodiazhnyi, 2020-05-15 Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key FeaturesBecome familiar with data processing, performance measuring, and model selection using various C++ librariesImplement practical machine learning and deep learning techniques to build smart modelsDeploy machine learning models to work on mobile and embedded devicesBook Description C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learnExplore how to load and preprocess various data types to suitable C++ data structuresEmploy key machine learning algorithms with various C++ librariesUnderstand the grid-search approach to find the best parameters for a machine learning modelImplement an algorithm for filtering anomalies in user data using Gaussian distributionImprove collaborative filtering to deal with dynamic user preferencesUse C++ libraries and APIs to manage model structures and parametersImplement a C++ program to solve image classification tasks with LeNet architectureWho this book is for You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book. |
programming machine learning from coding to deep learning: Genetic Algorithms and Machine Learning for Programmers Frances Buontempo, 2019 Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to machine learning. Discover machine learning algorithms using a handful of self-contained recipes. Create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, and cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection mathods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters. |
programming machine learning from coding to deep learning: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning |
programming machine learning from coding to deep learning: Machine Learning with PyTorch and Scikit-Learn Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, 2022-02-25 This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra. |
programming machine learning from coding to deep learning: Machine Learning with Python Cookbook Chris Albon, 2018-03-09 This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models |
programming machine learning from coding to deep learning: Python Machine Learning Sebastian Raschka, 2015-09-23 Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models. |
programming machine learning from coding to deep learning: Hands-On Machine Learning with R Brad Boehmke, Brandon M. Greenwell, 2019-11-07 Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data. |
programming machine learning from coding to deep learning: Machine Learning Jason Bell, 2020-02-17 Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper. |
programming machine learning from coding to deep learning: Machine Learning Refined Jeremy Watt, Reza Borhani, Aggelos K. Katsaggelos, 2020-01-09 An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises. |
programming machine learning from coding to deep learning: Python Machine Learning Projects Lisa Tagliaferri, Michelle Morales, Ellie Birkbeck, Alvin Wan, 2019-05-02 As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari. |
programming machine learning from coding to deep learning: Machine Learning with Python Matt Algore, 2021-01-06 Machine learning is rapidly changing the world, from diverse types of applications and research pursued in industry and academia. Machine learning is affecting every part of your daily life. From voice assistants using NLP and machine learning to make appointments, check your calendar, and play music, to programmatic advertisements - that are so accurate that they can predict what you will need before you even think of it. Powerful, isn't it? Do you want to do machine learning using Python, but you're having trouble getting started? Then this Complete Python Handbook will teach you every single info you need to know about this popular and powerful interpreted language. In this Step by Step Tutorial you will: Learn Exactly How Phyton Works and why its functionalities are so advantageous compared with any other programming language Realize How Python is The Ideal Programming Language for Querying Data and Retrieving Valuable Insights to always be able to find what you are looking for in the easiest possible way. Have the Chance to Practice What You Learn thanks to the exercises you find inside this Manual so that you are always sure you are doing the right thing in the right way. Discover, Even if You Use Python As a Beginner, Practical Ways to Build Your Machine Learning Solutions. With all the data available today, machine learning applications are limited only by your imagination. Have in Your Hands Several Possibilities for Both High and Low-Level Web Development to create websites and web applications for any kind of business ... & Lot More! Stop being afraid of all those difficult and tricky programming languages, now you can start learning or improve your knowledge of this incredible and super easy to understand programming language. This Machine Learning With Python Tutorial is designed for software programmers and beginners who need to learn Python programming language from scratch. Python is chosen by the best in the world, companies like Google, Facebook, or Microsoft, and it's growing very fast. Developers love its features. Eager to know why? Order Your Copy Now And Start Coding Your Best Project Ever! |
programming machine learning from coding to deep learning: Python Programming, Deep Learning Anthony Adams, 2020-04-15 Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner's guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here's what you'll get: Highly innovative ways to boost your understanding in Python programming, data analysis, and machine learning Quickly and effectively stop fraud with machine learning Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that'll maximize your understanding, and equip you with all the skills for real-life application! Thrive in the IT industry with this comprehensive Python Programming crash course! Scroll up, Click on Buy Now, and Start Learning Today! |
programming machine learning from coding to deep learning: Coding the Matrix Philip N. Klein, 2013-07 An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by doing, writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant xkcd comics. Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The Inner Product, Special Bases, The Singular Value Decomposition, The Eigenvector, The Linear Program A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon. |
programming machine learning from coding to deep learning: Introduction to Machine Learning Shan-e-Fatima, 2023-09-25 With the use of machine learning (ML), which is a form of artificial intelligence (AI), software programmers may predict outcomes more accurately without having to be explicitly instructed to do so. In order to forecast new output values, machine learning algorithms use historical data as input. Machine learning is frequently used in recommendation engines. Business process automation (BPA), predictive maintenance, spam filtering, malware threat detection, and fraud detection are a few additional common uses. Machine learning is significant because it aids in the development of new goods and provides businesses with a picture of trends in consumer behavior and operational business patterns. For many businesses, machine learning has emerged as a key competitive differentiation. The fundamental methods of machine learning are covered in the current book. |
programming machine learning from coding to deep learning: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Aurélien Géron, 2019-09-05 Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets |
programming machine learning from coding to deep learning: Practical Machine Learning with Rust Joydeep Bhattacharjee, 2019-12-10 Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust. |
programming machine learning from coding to deep learning: Python Machine Learning Django Smith, 2019-06-10 Start Programming Python What if you could make your own program, one that is able to learn by trial and error, or based on the information that you show it? What if you could get a program that could adapt and change based on the input of the user? And what if you were able to make all of this happen with the Python coding language, helping even beginner's work with more complicated codes? This is all possible with Python machine learning. This guidebook is going to take some time to look at Python machine learning and all of the neat things that you are able to do with it. Machine learning is a growing field, one that a lot of programmers want to spend their time on. But even though this sounds like a complicated part of technology to work with, you will find that with the help of the Python coding language, anyone can start writing their own codes in machine learning. This guidebook is going to take a look at all of the different topics that you need to know in order to get started with Python machine learning. Some of the topics that we will explore inside include: The basics of machine learning The difference between supervised and unsupervised machine learning. Setting up your new environment in the Python language. Data preprocessing with the help of machine learning. How to use Python coding to help with linear regression. Decision trees and random forests. How to work with support vector regression problems. Can machine learning really help with Naïve Bayes problems? Accelerated data analysis using the Python code. And so much more! If you have been interested in learning more about machine learning, and you want to be able to learn a few of the codes that can make it happen for you, make sure to check out this guidebook to help you get started! If all of this sounds like your ideal book, then hop on over and hit now that buy button! Well, stress no more! Buy this book and also learn all... and DOWNLOAD IT NOW! ★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ |
programming machine learning from coding to deep learning: C++ Machine Learning Phil Culliton, 2017-12-29 Get introduced to the concepts of Machine Learning and build efficient data models in C++About This Book* Get introduced to the concepts of Machine Learning and see how you can implement them in C++, and build efficient data models for training data using popular libraries such as mlpack and Shark* A detailed guide packed with real-life examples to help you build a solid understanding of Machine Learning.Who This Book Is ForThe target audience is C++ developers who want to get into machine learning, or knowledgeable ML programmers who don't know C++ well but want to use it, and libraries written in it, in their work. The reader should be conversant with at least one programming language, and have some familiarity with strongly-typed languages and vectors/matrices.What you will learn* Model relationships in your data using supervised learning* Uncover insights using clustering and t-SNE* Use ensemble and stack to create more powerful models* Use cuda-convnet and deep learning to solve image recognition problems* Build an end-to-end pipeline that turns what you learn into practical, ready-to-use software* Solve big data problems using Hadoop and Google's MR4CIn DetailMachine Learning tasks are CPU time-consuming. C++ outperforms any other programming language by allowing access to programming constructs to optimize CPU-based number crunching, precision, and memory management normally abstracted away in higher-level languages.This book aims to address the challenges associated with C++ machine learning by introducing you to several useful libraries (mlpack, Shogun, and so on); you'll producing a library of your own code along the way that should make common tasks more straightforward.We begin with a review of the basic concepts you will need to know or brush up on before going further, including math and an intro to the C++ style we'll be using throughout the book. We then deal with the fundamentals of ML-how to handle input, the basic algorithms, and sample cases where the basic algorithms succeed or fail. This is followed by more advanced topics such as complex algorithms, regularization, optimization, and visualizing and understanding data, referring back to earlier work consistently so that you can see the mountains move. We'll then touch upon topics of current interest: computer vision (including sections on CUDA and deep learning), natural language processing, and handling very large datasets.The journey ends with a coda: we go back through the original sample cases, applying what we've learned along the way to rectify the issues we ran into initially. |
programming machine learning from coding to deep learning: Machine Learning James Herron, 2020-09-09 Are you ready to start your new exciting career? Ready to crush your machine learning career goals? Are you overwhelmed with complexity of the books on this subject? Then let this breezy and fun book on machine learning models make you an expert in the field of Machine Learning! We live in a world of data deluge where gigabytes of data are generated daily. It is possible that this data might not be very useful for our daily applications. Major setbacks in the use of such data may be due to the presence of loopholes in data links previously generated or the data might be too vast for the limited human mind. Machine learning in this book presents some of the solutions to the problems above. Being an introductory guide, expect to learn the various basics involved in Machine Learning and Python. This book provides an insight into the new world of big data, then behooves you to learn more about Machine Learning. With this book, you'll learn: ◆ What is Machine Learning and what does it entail? ◆ Fundamental concepts and applications of machine learning ◆ Grasp how day-to-day activities are powered by machine learning ◆ Advantages and shortcomings of widely used machine learning algorithms ◆ Discover best practices for evaluating and tuning models If you are on the fence about making the leap to a new and lucrative career, this is the book for you! Then scroll up to the top and hit that BUY BUTTON! |
programming machine learning from coding to deep learning: Python for Data Science William Wizner, 2020-07-15 Do you want to learn Data analysis and Deep learning with Python coding and programming?Are you interested in practical applications on Machine learning and Artificial intelligence.?If yes, then keep reading... Many companies spend a lot of time collecting data and trying to use them to learn more about their customers and learning how to gain a competitive edge over others. Just gathering the data is not going to be enough to make it happen. Instead, we need to be able to take that data, and that data is usually pretty messy and needs some work and analyze it so that we are better able to handle all that comes with it. Data has always been relevant, but today, because of the growth in the internet and other sources, there is an unprecedented amount of data to work through. In the past, companies were able to manually go through the data they had and maybe use a few business intelligence tools to learn more about the customer and to make smart decisions. But nowadays this is nearly impossible. Evolving technologies are going to enable some cost savings for us, and smarter storage spaces to help us store some of this critical data. However, currently, in almost any industry and company, there is a huge need for skilled and knowledgeable data scientists. They are some of the highest-paid IT professionals right now, mainly because they can provide such a good value for the companies they work for, and because there is such a shortage in these professionals. This book covers: What is Data Analysis? The Basics of the Python Language Using Pandas Working with Python for Data Science Indexing and Selecting Arrays ...And Much More! So, ready to get started? Click Buy Now! |
programming machine learning from coding to deep learning: Machine Learning by Tutorials (Second Edition) raywenderlich Tutorial Team, Alexis Gallagher, Matthijs Hollemans, Audrey Tam, Chris LaPollo, 2020-05-19 Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app! |
What is Programming? And How to Get Started - Codecad…
Programming is the mental process of thinking up instructions to give to a machine (like a computer). Coding is …
Learn to Code - for Free | Codecademy
Start your programming journey with an introduction to the world of code and basic concepts.
Learn How to Code | Codecademy
New to coding? Start here and learn programming fundamentals that can be helpful for any language you learn.
Code Foundations - Codecademy
Start your programming journey with an introduction to the world of code and basic concepts. Includes Technical …
Learn the Basics of Programming with Codecade…
Take this course and learn about the history and basics of programming using Blockly and pseudocode. See the …
What is Programming? And How to Get Started - Codecademy
Programming is the mental process of thinking up instructions to give to a machine (like a computer). Coding is the process of transforming those ideas into a written language that a …
Learn to Code - for Free | Codecademy
Start your programming journey with an introduction to the world of code and basic concepts.
Learn How to Code | Codecademy
New to coding? Start here and learn programming fundamentals that can be helpful for any language you learn.
Code Foundations - Codecademy
Start your programming journey with an introduction to the world of code and basic concepts. Includes Technical Literacy, Career Overviews, Programming Concepts, and more.
Learn the Basics of Programming with Codecademy
Take this course and learn about the history and basics of programming using Blockly and pseudocode. See the specifics of different programming languages and dive into different tech …
What Is a Programming Language? - Codecademy
Jul 22, 2020 · Programming languages allow us to translate the 1s and 0s into something that humans can understand and write. A programming language is made up of a series of …
Java Tutorial: Learn Java Programming | Codecademy
Learn to code in Java — a robust programming language used to create software, web and mobile apps, and more.
Catalog Home - Codecademy
Learn the basics of the world's fastest growing and most popular programming language used by software engineers, analysts, data scientists, and machine learning engineers alike.
What To Consider When Choosing a Programming Language
Jan 4, 2023 · The free course will walk you through all of the factors you need to consider when choosing a language and introduce you to some go-to first programming languages. You’ll …
Learn C: Introduction - Codecademy
Want to learn how to get started with programming in an interactive way? Try our drag and drop code lessons!