Advertisement
proofs a long form mathematics textbook: Proofs Jay Cummings, 2021-01-19 This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation. The proofs are not terse, and aim for understanding over economy. Furthermore, dozens of proofs are preceded by scratch work or a proof sketch to give students a big-picture view and an explanation of how they would come up with it on their own.This book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. The text aims to make the ideas visible, and contains over 200 illustrations. The writing is relaxed and conversational, and includes periodic attempts at humor.This text is also an introduction to higher mathematics. This is done in-part through the chosen examples and theorems. Furthermore, following every chapter is an introduction to an area of math. These include Ramsey theory, number theory, topology, sequences, real analysis, big data, game theory, cardinality and group theory.After every chapter are pro-tips, which are short thoughts on things I wish I had known when I took my intro-to-proofs class. They include finer comments on the material, study tips, historical notes, comments on mathematical culture, and more. Also, after each chapter's exercises is an introduction to an unsolved problem in mathematics.In the first appendix we discuss some further proof methods, the second appendix is a collection of particularly beautiful proofs, and the third is some writing advice. |
proofs a long form mathematics textbook: Real Analysis Jay Cummings, 2019-07-15 This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation. The proofs are not terse, and aim for understanding over economy. Furthermore, dozens of proofs are preceded by scratch work or a proof sketch to give students a big-picture view and an explanation of how they would come up with it on their own. Examples often drive the narrative and challenge the intuition of the reader. The text also aims to make the ideas visible, and contains over 200 illustrations. The writing is relaxed and includes interesting historical notes, periodic attempts at humor, and occasional diversions into other interesting areas of mathematics. The text covers the real numbers, cardinality, sequences, series, the topology of the reals, continuity, differentiation, integration, and sequences and series of functions. Each chapter ends with exercises, and nearly all include some open questions. The first appendix contains a construction the reals, and the second is a collection of additional peculiar and pathological examples from analysis. The author believes most textbooks are extremely overpriced and endeavors to help change this.Hints and solutions to select exercises can be found at LongFormMath.com. |
proofs a long form mathematics textbook: Book of Proof Richard H. Hammack, 2016-01-01 This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. |
proofs a long form mathematics textbook: Introduction to Proof in Abstract Mathematics Andrew Wohlgemuth, 2014-06-10 The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses. |
proofs a long form mathematics textbook: Journey into Mathematics Joseph J. Rotman, 2013-01-18 This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition. |
proofs a long form mathematics textbook: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians. |
proofs a long form mathematics textbook: Introduction · to Mathematical Structures and · Proofs Larry Gerstein, 2013-11-21 This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a bridge course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call mathematical maturity. I don't believe that theorem-proving can be taught any more than question-answering can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction. |
proofs a long form mathematics textbook: Proofs and Fundamentals Ethan D. Bloch, 2011-02-15 “Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a transition course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition. |
proofs a long form mathematics textbook: Proof and the Art of Mathematics Joel David Hamkins, 2021-02-23 How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, Once you have solved a problem, why not push the ideas harder to see what further you can prove with them? These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text. |
proofs a long form mathematics textbook: Introduction to Mathematical Proofs Charles Roberts, 2024-10-14 This book is designed to prepare students for higher mathematics by focusing on the development of theorems and proofs. Beginning with logic, the text discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It covers elementary topics in set theory, explores various properties of |
proofs a long form mathematics textbook: Mathematical Proofs Gary Chartrand, Albert D. Polimeni, Ping Zhang, 2013 This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. |
proofs a long form mathematics textbook: All the Mathematics You Missed Thomas A. Garrity, 2002 An essential resource for advanced undergraduate and beginning graduate students in quantitative subjects who need to quickly learn some serious mathematics. |
proofs a long form mathematics textbook: Science Of Learning Mathematical Proofs, The: An Introductory Course Elana Reiser, 2020-11-25 College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned. |
proofs a long form mathematics textbook: Proofs from THE BOOK Martin Aigner, Günter M. Ziegler, 2013-06-29 According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such perfect proofs, those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics. |
proofs a long form mathematics textbook: Proofs 101 Joseph Kirtland, 2020-11-21 Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises |
proofs a long form mathematics textbook: An Introduction to Proof Theory Paolo Mancosu, Sergio Galvan, Richard Zach, 2021-08-12 An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics. |
proofs a long form mathematics textbook: Proofs and Ideas B. Sethuraman, 2021-12-02 Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India. |
proofs a long form mathematics textbook: Analysis with an Introduction to Proof Steven R. Lay, 2015-12-03 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For courses in undergraduate Analysis and Transition to Advanced Mathematics. Analysis with an Introduction to Proof, Fifth Edition helps fill in the groundwork students need to succeed in real analysis—often considered the most difficult course in the undergraduate curriculum. By introducing logic and emphasizing the structure and nature of the arguments used, this text helps students move carefully from computationally oriented courses to abstract mathematics with its emphasis on proofs. Clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers make this text readable, student-oriented, and teacher- friendly. |
proofs a long form mathematics textbook: Basic Concepts of Mathematics Elias Zakon, 2001 |
proofs a long form mathematics textbook: The Real Analysis Lifesaver Raffi Grinberg, 2017-01-10 The essential lifesaver that every student of real analysis needs Real analysis is difficult. For most students, in addition to learning new material about real numbers, topology, and sequences, they are also learning to read and write rigorous proofs for the first time. The Real Analysis Lifesaver is an innovative guide that helps students through their first real analysis course while giving them the solid foundation they need for further study in proof-based math. Rather than presenting polished proofs with no explanation of how they were devised, The Real Analysis Lifesaver takes a two-step approach, first showing students how to work backwards to solve the crux of the problem, then showing them how to write it up formally. It takes the time to provide plenty of examples as well as guided fill in the blanks exercises to solidify understanding. Newcomers to real analysis can feel like they are drowning in new symbols, concepts, and an entirely new way of thinking about math. Inspired by the popular Calculus Lifesaver, this book is refreshingly straightforward and full of clear explanations, pictures, and humor. It is the lifesaver that every drowning student needs. The essential “lifesaver” companion for any course in real analysis Clear, humorous, and easy-to-read style Teaches students not just what the proofs are, but how to do them—in more than 40 worked-out examples Every new definition is accompanied by examples and important clarifications Features more than 20 “fill in the blanks” exercises to help internalize proof techniques Tried and tested in the classroom |
proofs a long form mathematics textbook: Proofs and Refutations Imre Lakatos, 1976 Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics. |
proofs a long form mathematics textbook: Fibonacci’s Liber Abaci Laurence Sigler, 2012-12-06 First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods. |
proofs a long form mathematics textbook: A Transition to Advanced Mathematics Douglas Smith, Maurice Eggen, Richard St. Andre, 2010-06-01 A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. |
proofs a long form mathematics textbook: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills. |
proofs a long form mathematics textbook: Real Mathematical Analysis Charles Chapman Pugh, 2013-03-19 Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises. |
proofs a long form mathematics textbook: A Transition to Proof Neil R. Nicholson, 2019-03-21 A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the nuts and bolts' of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict mathematical do’s and don’ts, which are presented in eye-catching text-boxes throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology |
proofs a long form mathematics textbook: How to Think About Analysis Lara Alcock, 2014-09-25 Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics. |
proofs a long form mathematics textbook: A First Course in Real Analysis Sterling K. Berberian, 2012-09-10 Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, real alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the Fundamental Theorem), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done. |
proofs a long form mathematics textbook: Linear Algebra As An Introduction To Abstract Mathematics Bruno Nachtergaele, Anne Schilling, Isaiah Lankham, 2015-11-30 This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises. |
proofs a long form mathematics textbook: Real Analysis Daniel W. Cunningham, 2021-01-19 Typically, undergraduates see real analysis as one of the most difficult courses that a mathematics major is required to take. The main reason for this perception is twofold: Students must comprehend new abstract concepts and learn to deal with these concepts on a level of rigor and proof not previously encountered. A key challenge for an instructor of real analysis is to find a way to bridge the gap between a student’s preparation and the mathematical skills that are required to be successful in such a course. Real Analysis: With Proof Strategies provides a resolution to the bridging-the-gap problem. The book not only presents the fundamental theorems of real analysis, but also shows the reader how to compose and produce the proofs of these theorems. The detail, rigor, and proof strategies offered in this textbook will be appreciated by all readers. Features Explicitly shows the reader how to produce and compose the proofs of the basic theorems in real analysis Suitable for junior or senior undergraduates majoring in mathematics. |
proofs a long form mathematics textbook: Proofs Without Words Roger B. Nelsen, 1993 |
proofs a long form mathematics textbook: Proof in Geometry A. I. Fetisov, Ya. S. Dubnov, 2012-06-11 This single-volume compilation of 2 books explores the construction of geometric proofs. It offers useful criteria for determining correctness and presents examples of faulty proofs that illustrate common errors. 1963 editions. |
proofs a long form mathematics textbook: Introduction to Topology Bert Mendelson, 2012-04-26 Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition. |
proofs a long form mathematics textbook: Metamath: A Computer Language for Mathematical Proofs Norman Megill, David A. Wheeler, 2019 Metamath is a computer language and an associated computer program for archiving, verifying, and studying mathematical proofs. The Metamath language is simple and robust, with an almost total absence of hard-wired syntax, and we believe that it provides about the simplest possible framework that allows essentially all of mathematics to be expressed with absolute rigor. While simple, it is also powerful; the Metamath Proof Explorer (MPE) database has over 23,000 proven theorems and is one of the top systems in the Formalizing 100 Theorems challenge. This book explains the Metamath language and program, with specific emphasis on the fundamentals of the MPE database. |
proofs a long form mathematics textbook: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 2007-08-24 Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments. |
proofs a long form mathematics textbook: Introduction to Topology Theodore W. Gamelin, Robert Everist Greene, 2013-04-22 This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition. |
proofs a long form mathematics textbook: Mathematical Reasoning Theodore A. Sundstrom, 2007 Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom |
proofs a long form mathematics textbook: Abstract Algebra Laura L. Dos Reis, Anthony J. Dos Reis, 2017-03-18 Learning abstract algebra is not hard. It is not like getting to know the deep forest - its trails, streams, lakes, flora, and fauna. It takes time, effort, and a willingness to venture into new territory, It is a task that cannot be done overnight. But with a good guide (this book!), it should be an exciting excursion with, perhaps, only a few bumps along the way. Students - even students who have done very well in calculus - often have trouble with abstract algebra. Our objective in writing this book is to make abstract algebra as accessible as elementary calculus and, we hope, a real joy to study. Our textbook has three advantages over the standard abstract algebra textbook. First, it covers all the foundational concepts needed for abstract algebra (the only prerequisite for this book is high school algebra). Second, it is easier to read and understand (so it is ideal for self-learners). Third, it gets the reader to think mathematically and to do mathematics - to experiment, make conjectures, and prove theorems - while reading the book. The result is not only a better learning experience but also a more enjoyable one -- from back cover. |
proofs a long form mathematics textbook: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. |
proofs a long form mathematics textbook: Proof, Logic, and Conjecture Robert S. Wolf, 1997-12-15 This text is designed to teach students how to read and write proofs in mathematics and to acquaint them with how mathematicians investigate problems and formulate conjecture. |
Proofs Home - Long-Form Math
The book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. In the first appendix we discuss some further proof methods, the second appendix is a collection of particularly beautiful proofs, and the third is …
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook ...
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook Series) Paperback – 19 Jan. 2021. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation.
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook ...
19 Jan 2021 · Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook Series) by Jay Cummings (Author) 4.8 850 ratings. Part of: The Long-Form Math Textbook Series (2 books) See all formats and editions. This textbook is designed for students.
Proofs: A Long-Form Mathematics Textbook by Jay Cummings - Goodreads
19 Jan 2021 · This book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. The text aims to make the ideas visible, and contains over 200 illustrations.
Long-Form Math
Click here to visit the page for the book Proofs: A Long-Form Mathematics Textbook
Book:Jay Cummings/Proofs - ProofWiki
15 Jun 2024 · Jay Cummings: Proofs: A Long-Form Mathematics Textbook. Published 2021 2021, Self-Published. ISBN 9798595265973. Subject Matter. The technique of mathematical proof. Contents. Editorial Board. 1 Intuitive Proofs. 2 Direct Proofs. 3 Sets. 4 Induction. 5 Logic. 6 The Contrapositive. 7 Contradiction. 8 Functions. 9 Relations. Appendices.
Proofs: A Long-Form Mathematics Textbook - Amazon.nl
Proofs: A Long-Form Mathematics Textbook Paperback – Big Book, 19 Jan. 2021. English edition by Jay Cummings (auteur) 4.8 805 ratings. See all formats and editions. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation.
Proofs: A Long-form Mathematics Textbook - Google Books
LongFormMath.com, 2021 - Mathematics - 501 pages. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more...
Proofs: A Long-Form Mathematics Textbook - Amazon.ca
This book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. The writing is conversational. This text is also an introduction to higher mathematics.
Proofs: A Long-Form Mathematics Textbook Paperback
Proofs: A Long-Form Mathematics Textbook Paperback – 19 January 2021. by Jay Cummings (Author) 4.8 823 ratings. Part of: The Long-Form Math Textbook Series (2 books) See all formats and editions. This textbook is designed for students.
Proofs Home - Long-Form Math
The book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. In the first appendix we discuss some further proof methods, the second appendix is a collection of particularly beautiful proofs, and the third is …
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook ...
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook Series) Paperback – 19 Jan. 2021. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation.
Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook ...
19 Jan 2021 · Proofs: A Long-Form Mathematics Textbook (The Long-Form Math Textbook Series) by Jay Cummings (Author) 4.8 850 ratings. Part of: The Long-Form Math Textbook Series (2 books) See all formats and editions. This textbook is designed for students.
Proofs: A Long-Form Mathematics Textbook by Jay Cummings - Goodreads
19 Jan 2021 · This book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. The text aims to make the ideas visible, and contains over 200 illustrations.
Long-Form Math
Click here to visit the page for the book Proofs: A Long-Form Mathematics Textbook
Book:Jay Cummings/Proofs - ProofWiki
15 Jun 2024 · Jay Cummings: Proofs: A Long-Form Mathematics Textbook. Published 2021 2021, Self-Published. ISBN 9798595265973. Subject Matter. The technique of mathematical proof. Contents. Editorial Board. 1 Intuitive Proofs. 2 Direct Proofs. 3 Sets. 4 Induction. 5 Logic. 6 The Contrapositive. 7 Contradiction. 8 Functions. 9 Relations. Appendices.
Proofs: A Long-Form Mathematics Textbook - Amazon.nl
Proofs: A Long-Form Mathematics Textbook Paperback – Big Book, 19 Jan. 2021. English edition by Jay Cummings (auteur) 4.8 805 ratings. See all formats and editions. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more commentary, motivation and explanation.
Proofs: A Long-form Mathematics Textbook - Google Books
LongFormMath.com, 2021 - Mathematics - 501 pages. This textbook is designed for students. Rather than the typical definition-theorem-proof-repeat style, this text includes much more...
Proofs: A Long-Form Mathematics Textbook - Amazon.ca
This book covers intuitive proofs, direct proofs, sets, induction, logic, the contrapositive, contradiction, functions and relations. The writing is conversational. This text is also an introduction to higher mathematics.
Proofs: A Long-Form Mathematics Textbook Paperback
Proofs: A Long-Form Mathematics Textbook Paperback – 19 January 2021. by Jay Cummings (Author) 4.8 823 ratings. Part of: The Long-Form Math Textbook Series (2 books) See all formats and editions. This textbook is designed for students.