First Course In Differential Equations

Advertisement



  first course in differential equations: A First Course in Differential Equations with Applications Dennis G. Zill, 1979 An introduction to differential equations; First-order differential equations; Applications of first-order differential equations; Linear equations of higher order; Applications of second-order differential equations: vibrational models; Differential equations with variable coefficients; The laplace transform; Linear systems of differencial equations; Numerial methods; Partial differential equations.
  first course in differential equations: A First Course in Differential Equations J. David Logan, 2006-05-20 Therearemanyexcellenttextsonelementarydi?erentialequationsdesignedfor the standard sophomore course. However, in spite of the fact that most courses are one semester in length, the texts have evolved into calculus-like pres- tations that include a large collection of methods and applications, packaged with student manuals, and Web-based notes, projects, and supplements. All of this comes in several hundred pages of text with busy formats. Most students do not have the time or desire to read voluminous texts and explore internet supplements. The format of this di?erential equations book is di?erent; it is a one-semester, brief treatment of the basic ideas, models, and solution methods. Itslimitedcoverageplacesitsomewherebetweenanoutlineandadetailedte- book. I have tried to write concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying di?erential eq- tions to problems in engineering, science, and applied mathematics. It can give some instructors, who want more concise coverage, an alternative to existing texts.
  first course in differential equations: A First Course in Differential Equations with Modeling Applications Dennis G. Zill, 1997
  first course in differential equations: A First Course in Differential Equations, Modeling, and Simulation Carlos A. Smith, Scott W. Campbell, 2011-05-18 Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for
  first course in differential equations: A First Course in Ordinary Differential Equations Suman Kumar Tumuluri, 2021-03-24 A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like real analysis, linear algebra are stated clearly in the book. This enables the book to be accessible to physics and engineering students also. Moreover, sufficient number of worked out examples are presented to illustrate every new technique introduced in this book. Moreover, the author elucidates the importance of various hypotheses in the results by providing counter examples. Features Offers comprehensive coverage of all essential topics required for an introductory course in ODE. Emphasizes on both computation of solutions to ODEs as well as the theoretical concepts like well-posedness, comparison results, stability etc. Systematic presentation of insights of the nature of the solutions to linear/non-linear ODEs. Special attention on the study of asymptotic behavior of solutions to autonomous ODEs (both for scalar case and 2✕2 systems). Sufficient number of examples are provided wherever a notion is introduced. Contains a rich collection of problems. This book serves as a text book for undergraduate students and a reference book for scientists and engineers. Broad coverage and clear presentation of the material indeed appeals to the readers. Dr. Suman K. Tumuluri has been working in University of Hyderabad, India, for 11 years and at present he is an associate professor. His research interests include applications of partial differential equations in population dynamics and fluid dynamics.
  first course in differential equations: A First Course in the Numerical Analysis of Differential Equations A. Iserles, 2009 lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations. --Book Jacket.
  first course in differential equations: A First Course in Differential Equations John David Logan, 2006 While the standard sophomore course on elementary differential equations is typically one semester in length, most of the texts currently being used for these courses have evolved into calculus-like presentations that include a large collection of methods and applications, packaged with state-of-the-art color graphics, student solution manuals, the latest fonts, marginal notes, and web-based supplements. All of this adds up to several hundred pages of text and can be very expensive. Many students do not have the time or desire to read voluminous texts and explore internet supplements. Thats what makes the format of this differential equations book unique. It is a one-semester, brief treatment of the basic ideas, models, and solution methods. Its limited coverage places it somewhere between an outline and a detailed textbook. The author writes concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying ODEs to problems in engineering, science, and applied mathematics. It will also give instructors, who want more concise coverage, an alternative to existing texts. This text also encourages students to use a computer algebra system to solve problems numerically. It can be stated with certainty that the numerical solution of differential equations is a central activity in science and engineering, and it is absolutely necessary to teach students scientific computation as early as possible. Templates of MATLAB programs that solve differential equations are given in an appendix. Maple and Mathematica commands are given as well. The author taught this material on several ocassions to students who have had a standard three-semester calculus sequence. It has been well received by many students who appreciated having a small, definitive parcel of material to learn. Moreover, this text gives students the opportunity to start reading mathematics at a slightly higher level than experienced in pre-calculus and calculus; not every small detail is included. Therefore the book can be a bridge in their progress to study more advanced material at the junior-senior level, where books leave a lot to the reader and are not packaged with elementary formats. J. David Logan is Professor of Mathematics at the University of Nebraska, Lincoln. He is the author of another recent undergraduate textbook, Applied Partial Differential Equations, 2nd Edition (Springer 2004).
  first course in differential equations: A First Course in Differential Equations, Modeling, and Simulation Carlos A. Smith, Scott W. Campbell, 2011-05-18 Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.
  first course in differential equations: Differential Equations Martin M. Guterman, 1984
  first course in differential equations: A First Course in the Qualitative Theory of Differential Equations James Hetao Liu, 2003 This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.
  first course in differential equations: Differential Equations with Boundary-value Problems Dennis G. Zill, Michael R. Cullen, 2005 Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the how behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.
  first course in differential equations: College Algebra Dennis Zill, Jacqueline Dewar, 2010-12-16 With an emphasis on problem-solving and packed with engaging, student-friendly exercise sets and examples, the Third Edition of Zill and Dewar's College Algebra is the perfect text for the traditional college algebra course. Zill's renowned pedagogy and accessible, straightforward writing style urges students to delve into the content and experience the mathematics first hand through numerous problem sets. These problem sets give students the opportunity to test their comprehension, challenge their understanding, and apply their knowledge to real-world situations. A robust collection of student and instructor ancillaries include: WebAssign access, PowerPoint Lecture Slides, Test Bank, Student Resource Manual and more.
  first course in differential equations: A Very Applied First Course in Partial Differential Equations Michael K. Keane, 2002 This extremely readable book illustrates how mathematics applies directly to different fields of study. Focuses on problems that require physical to mathematical translations, by showing readers how equations have actual meaning in the real world. Covers fourier integrals, and transform methods, classical PDE problems, the Sturm-Liouville Eigenvalue problem, and much more. For readers interested in partial differential equations.
  first course in differential equations: A First Course in Ordinary Differential Equations Martin Hermann, Masoud Saravi, 2014-04-22 This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.
  first course in differential equations: Differential Equations Antonio Ambrosetti, Shair Ahmad, 2023-12-12
  first course in differential equations: A First Course in Differential Equations J. David Logan, 2015-07-01 The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.
  first course in differential equations: A First Course in Partial Differential Equations H. F. Weinberger, 2012-04-20 Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.
  first course in differential equations: Ordinary Differential Equations Morris Tenenbaum, Harry Pollard, 1985-10-01 Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
  first course in differential equations: Ordinary Differential Equations D. Somasundaram, 2001 Though ordinary differential equations is taught as a core course to students in mathematics and applied mathematics, detailed coverage of the topics with sufficient examples is unique. Written by a mathematics professor and intended as a textbook for third- and fourth-year undergraduates, the five chapters of this publication give a precise account of higher order differential equations, power series solutions, special functions, existence and uniqueness of solutions, and systems of linear equations. Relevant motivation for different concepts in each chapter and discussion of theory and problems-without the omission of steps-sets Ordinary Differential Equations: A First Course apart from other texts on ODEs. Full of distinguishing examples and containing exercises at the end of each chapter, this lucid course book will promote self-study among students.
  first course in differential equations: A First Course in Differential Equations with Modeling Applications Dennis G. Zill, 2013
  first course in differential equations: A First Course in Differential Equations with Applications A. H. Siddiqi, Pammy Manchanda, 2006-02-01 A First Course in Differential Equations with Applications is an introductory text on differential and partial differential equations providing a basic understanding of an impor- tant branch of Applied Mathematics. Placing emphasis on applications, this b
  first course in differential equations: A First Course in Differential Equations Dennis G. Zill, 1993 % mainly for math and engineering majors.% clear, concise writng style is student oriented.J% graded problem sets, with many diverse problems, range form drill to more challenging problems.% this course follows the three-semester calculus sequence at two- and four-year schools
  first course in differential equations: A First Course in Differential Equations with Applications Dennis G. Zill, 1988
  first course in differential equations: Differential Equations and Their Applications M. Braun, 2013-06-29 For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.
  first course in differential equations: A First Course in Differential Equations with Modeling Applications Warren S. Wright, Carol D. Wright, 2001 This Student Solutions Manual, written by Warren S. Wright, provides a solution to every third problem in each exercise set (with the exception of the Discussion Problems).
  first course in differential equations: Differential Equations Martin M. Guterman, Zbigniew Nitecki, 1988
  first course in differential equations: A Course in Ordinary Differential Equations Bindhyachal Rai, D. P. Choudhury, Herbert I. Freedman, 2002 Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.
  first course in differential equations: Notes on Diffy Qs Jiri Lebl, 2019-11-13 Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
  first course in differential equations: A Course in Ordinary Differential Equations Stephen A. Wirkus, Randall J. Swift, 2006-10-23 The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB, Mathematica, and Maple A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field o
  first course in differential equations: Introduction to Differential Equations with Dynamical Systems Stephen L. Campbell, Richard Haberman, 2011-10-14 Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
  first course in differential equations: Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles Nail H Ibragimov, 2009-11-19 A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.
  first course in differential equations: Ordinary Differential Equations William A. Adkins, Mark G. Davidson, 2012-07-01 Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
  first course in differential equations: ˜Aœ First Course in Differential Equations , 1993
  first course in differential equations: Ordinary Differential Equations and Dynamical Systems Gerald Teschl, 2024-01-12 This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
  first course in differential equations: Introduction to Differential Equations: Second Edition Michael E. Taylor, 2021-10-21 This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare
  first course in differential equations: Elementary Differential Equations with Boundary Value Problems William F. Trench, 2001 Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
  first course in differential equations: Ordinary Differential Equations in Rn Livio C. Piccinini, Guido Stampacchia, Giovanni Vidossich, 2012-12-06 During the fifties, one of the authors, G. Stampacchia, had prepared some lecture notes on ordinary differential equations for a course in ad analysis. These remained for a long time unused because he was no vanced longer very interested in the study of such equations. We now see, though, that numerous applications to biology, chemistry, economics, and medicine have recently been added to the traditional ones in mechanics; also, there has been in these last years a reemergence of interest in nonlinear analy sis, of which the theory of ordinary differential euqations is one of the principal sources of methods and problems. Hence the idea to write a book. Our text, based on the old notes and experience gained in many courses, seminars, and conferences, both in Italy and abroad, aims to give a simple and rapid introduction to the various themes, problems, and methods of the theory of ordinary differential equations. The book has been conceived in such a way so that even the reader who has merely had a first course in calculus may be able to study it and to obtain a panoramic vision of the theory. We have tried to avoid abstract formalism, preferring instead a discursive style, which should make the book accessible to engineers and physicists without specific preparation in modern mathematics. For students of mathematics, it pro vides motivation for the subject of more advanced analysis courses.
  first course in differential equations: Elementary Differential Equations and Boundary Value Problems William E. Boyce, Richard C. DiPrima, Douglas B. Meade, 2017-08-21 Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
  first course in differential equations: Introduction to Differential Equations William E. Boyce, Richard C. DiPrima, 1970
  first course in differential equations: Ordinary Differential Equations Richard K Miller, Anthony N. Michel, 2014-05-10 Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity, prerequisites have been kept to a minimum and the material is covered in such a way as to be appealing to a wide audience. The book contains eight chapters and begins with an introduction the subject and a discussion of some important examples of differential equations that arise in science and engineering. Separate chapters follow on the fundamental theory of linear and nonlinear differential equations; linear boundary value problems; Lyapunov stability theory; and perturbations of linear systems. Subsequent chapters deal with the Poincare-Bendixson theory and with two-dimensional van der Pol type equations; and periodic solutions of general order systems.
Last name 和 First name 到底哪个是名哪个是姓? - 知乎
Last name 和 First name 到底哪个是名哪个是姓? 上学的时候老师说因为英语文化中名在前,姓在后,所以Last name是姓,first name是名,假设一个中国人叫孙悟空,那么他的first nam…

在英语中,按照国际规范,中国人名如何书写? - 知乎
谢邀。 其实并不存在一个所谓“国际规范”,只有习惯用法。因为世界上并没有这么一个国际机构,去做过“规范中国人名的英语写法”这么一件事情,并且把这套规范推行到所有英语国家的官 …

Last name 和 First name 到底哪个是名哪个是姓? - 知乎
也许所有没有解决过软件国际化问题的中国人都会将 last name 翻译为姓,等同于 family name,而将 first name 翻译为名,等同于 given name,因为从小到大,所有英语老师都是这 …

在使用cursor导入deepseek的API时报错如下所示,该怎么办? - 知乎
在使用cursor导入deepseek的API时报错如下所示,是本人操作有所不对吗?

stata使用ivreghdfe报错? - 知乎
如图为多维固定效应模型应用工具变量时stata回归的代码,可是报错了,有哪位好心人知道是怎么回事吗?

LM-studio模型加载失败? - 知乎
LM-studio模型加载失败问题的解决方法,提供详细步骤和注意事项,帮助用户顺利加载模型。

英文地址怎么填写? - 知乎
以美国为例,首先回答你正规地道的写地址方式, #20A, 2345 Belmont Avenue, Durham, NC, 27700 其中#代表公寓号, 2345 Belmont Avenue代表街道号,Durham是城市,NC是 …

first 和 firstly 的用法区别是什么? - 知乎
a.First ( = First of all)I must finish this work.(含义即,先完成这项工作再说,因为这是必须的,重要的,至于其它,再说吧) b.First come,first served .先来,先招待(最重要) …

提交表单显示Please verify the CAPTCHA before proceed怎么办?
本人因为旅游需要打印电子签证,但是提交后显示Please verify the CAPTCHA before proceed,换了好几个浏…

对一个陌生的英文名字,如何快速确定哪个是姓哪个是名? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

Last name 和 First name 到底哪个是名哪个是姓? - 知乎
Last name 和 First name 到底哪个是名哪个是姓? 上学的时候老师说因为英语文化中名在前,姓在后,所以Last name是姓,first name是名,假设一个中国人叫孙悟空,那么他的first nam…

在英语中,按照国际规范,中国人名如何书写? - 知乎
谢邀。 其实并不存在一个所谓“国际规范”,只有习惯用法。因为世界上并没有这么一个国际机构,去做过“规范中国人名的英语写法”这么一件事情,并且把这套规范推行到所有英语国家的官 …

Last name 和 First name 到底哪个是名哪个是姓? - 知乎
也许所有没有解决过软件国际化问题的中国人都会将 last name 翻译为姓,等同于 family name,而将 first name 翻译为名,等同于 given name,因为从小到大,所有英语老师都是这 …

在使用cursor导入deepseek的API时报错如下所示,该怎么办? - 知乎
在使用cursor导入deepseek的API时报错如下所示,是本人操作有所不对吗?

stata使用ivreghdfe报错? - 知乎
如图为多维固定效应模型应用工具变量时stata回归的代码,可是报错了,有哪位好心人知道是怎么回事吗?

LM-studio模型加载失败? - 知乎
LM-studio模型加载失败问题的解决方法,提供详细步骤和注意事项,帮助用户顺利加载模型。

英文地址怎么填写? - 知乎
以美国为例,首先回答你正规地道的写地址方式, #20A, 2345 Belmont Avenue, Durham, NC, 27700 其中#代表公寓号, 2345 Belmont Avenue代表街道号,Durham是城市,NC是 …

first 和 firstly 的用法区别是什么? - 知乎
a.First ( = First of all)I must finish this work.(含义即,先完成这项工作再说,因为这是必须的,重要的,至于其它,再说吧) b.First come,first served .先来,先招待(最重要) …

提交表单显示Please verify the CAPTCHA before proceed怎么办?
本人因为旅游需要打印电子签证,但是提交后显示Please verify the CAPTCHA before proceed,换了好几个浏…

对一个陌生的英文名字,如何快速确定哪个是姓哪个是名? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …