Advertisement
essential math for ai: Essential Math for AI Hala Nelson, 2023-01-04 Companies are scrambling to integrate AI into their systems and operations. But to build truly successful solutions, you need a firm grasp of the underlying mathematics. This accessible guide walks you through the math necessary to thrive in the AI field such as focusing on real-world applications rather than dense academic theory. Engineers, data scientists, and students alike will examine mathematical topics critical for AI--including regression, neural networks, optimization, backpropagation, convolution, Markov chains, and more--through popular applications such as computer vision, natural language processing, and automated systems. And supplementary Jupyter notebooks shed light on examples with Python code and visualizations. Whether you're just beginning your career or have years of experience, this book gives you the foundation necessary to dive deeper in the field. Understand the underlying mathematics powering AI systems, including generative adversarial networks, random graphs, large random matrices, mathematical logic, optimal control, and more Learn how to adapt mathematical methods to different applications from completely different fields Gain the mathematical fluency to interpret and explain how AI systems arrive at their decisions |
essential math for ai: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
essential math for ai: Essential Mathematics for Games and Interactive Applications James M. Van Verth, Lars M. Bishop, 2008-05-19 Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction. |
essential math for ai: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
essential math for ai: Machine Learning Ethem Alpaydin, 2016-10-07 A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security. |
essential math for ai: Math for Deep Learning Ronald T. Kneusel, 2021-12-07 Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta. |
essential math for ai: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning. |
essential math for ai: Revolutionary Mathematics Justin Joque, 2022-01-18 Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation. |
essential math for ai: Mastering Essential Math Skills Richard W. Fisher, 2003-01-15 Provides structure and guidance to the teacher by means of speed drills, review exercises, teacher tips, word problems and new material for each day. |
essential math for ai: Guide to Essential Math Sy M. Blinder, 2013-02-14 This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables |
essential math for ai: Problem Solving Richard W. Fisher, 2016-06 What good is math if you can't put it to good use? Studies show that problem solving is THE most neglected topic in most math programs. This book will ensure that the students develop their math critical thinking skills. Students will learn to apply whole numbers, fractions, decimals, and percents to real-life situations. |
essential math for ai: Singapore Math Kindergarten Workbook Kindergarten Math Practice, 2020-11-15 Teaching mathematics the right way. Why You'll Love this Book With this book your will learn: addition and subtraction, comparing numbers, geometry and more. More than 300 different and fun problems. Problems from easy to medium and then to hard. Fun and essential kinder math activities. Cute and inspiring themes. Practically sized and high quality paper. Eye-friendly writing. This book will be the best gift for your children this year. |
essential math for ai: Math for Programmers Paul Orland, 2021-01-12 In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks |
essential math for ai: Essential Math for Data Science Thomas Nield, 2022-05-26 Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market |
essential math for ai: Linear Algebra and Learning from Data Gilbert Strang, 2019-01-31 Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation. |
essential math for ai: Essential Mathematics for Engineers and Scientists Thomas J. Pence, Indrek S. Wichman, 2020-05-21 Clear and engaging introduction for graduate students in engineering and the physical sciences to essential topics of applied mathematics. |
essential math for ai: AI for Games, Third Edition Ian Millington, 2019-03-18 AI is an integral part of every video game. This book helps professionals keep up with the constantly evolving technological advances in the fast growing game industry and equips students with up-to-date information they need to jumpstart their careers. This revised and updated Third Edition includes new techniques, algorithms, data structures and representations needed to create powerful AI in games. Key Features A comprehensive professional tutorial and reference to implement true AI in games Includes new exercises so readers can test their comprehension and understanding of the concepts and practices presented Revised and updated to cover new techniques and advances in AI Walks the reader through the entire game AI development process |
essential math for ai: Essential Mathematics for Economics and Business Teresa Bradley, 2013-05-06 Essential Mathematics for Economics and Business is established as one of the leading introductory textbooks on mathematics for students of business and economics. Combining a user–friendly approach to mathematics with practical applications to the subjects, the text provides students with a clear and comprehensible guide to mathematics. The fundamental mathematical concepts are explained in a simple and accessible style, using a wide selection of worked examples, progress exercises and real–world applications. New to this Edition Fully updated text with revised worked examples and updated material on Excel and Powerpoint New exercises in mathematics and its applications to give further clarity and practice opportunities Fully updated online material including animations and a new test bank The fourth edition is supported by a companion website at www.wiley.com/college/bradley, which contains: Animations of selected worked examples providing students with a new way of understanding the problems Access to the Maple T.A. test bank, which features over 500 algorithmic questions Further learning material, applications, exercises and solutions. Problems in context studies, which present the mathematics in a business or economics framework. Updated PowerPoint slides, Excel problems and solutions. The text is aimed at providing an introductory-level exposition of mathematical methods for economics and business students. In terms of level, pace, complexity of examples and user-friendly style the text is excellent - it genuinely recognises and meets the needs of students with minimal maths background. —Colin Glass, Emeritus Professor, University of Ulster One of the major strengths of this book is the range of exercises in both drill and applications. Also the 'worked examples' are excellent; they provide examples of the use of mathematics to realistic problems and are easy to follow. —Donal Hurley, formerly of University College Cork The most comprehensive reader in this topic yet, this book is an essential aid to the avid economist who loathes mathematics! —Amazon.co.uk |
essential math for ai: Essentials of Economics Paul Krugman, Paul R. Krugman, Robin Wells, Kathryn Graddy, 2010-10 Check out preview content for Essentials of Economics here. Essentials of Economics brings the same captivating writing and innovative features of Krugman/Wells to the one-term economics course. Adapted by Kathryn Graddy, it is the ideal text for teaching basic economic principles, with enough real-world applications to help students see the applicability, but not so much detail as to overwhelm them. Watch a video interview of Paul Krugman here. |
essential math for ai: Linear Algebra Problem Book Paul R. Halmos, 1995-12-31 Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer. |
essential math for ai: AI Mastery Trilogy Andrew Hinton, Dive into the AI Mastery Trilogy, the ultimate collection for professionals seeking to conquer the world of artificial intelligence (AI). This 3-in-1 compendium is meticulously crafted to guide you from the foundational principles of AI to the intricate mathematical frameworks and practical coding applications that will catapult your expertise to new heights. Book 1: AI Basics for Managers by Andrew Hinton is your gateway to understanding and implementing AI in business. It equips managers with the knowledge to navigate the AI landscape, identify opportunities, and lead their organizations toward a future of innovation and growth. Book 2: Essential Math for AI demystifies the mathematical backbone of AI, offering a deep dive into the core concepts that fuel AI systems. From linear algebra to game theory, this book is a treasure trove for anyone eager to grasp the numerical and logical foundations that underpin AI's transformative power. Book 3: AI and ML for Coders is the hands-on manual for coders ready to harness AI and machine learning in their projects. It provides a comprehensive overview of AI and ML technologies, practical coding advice, and ethical considerations, ensuring you're well-equipped to create cutting-edge, responsible AI applications. The AI Mastery Trilogy is more than just a set of books; it's a comprehensive learning journey designed to empower business leaders, mathematicians, and coders alike. Whether you're looking to lead, understand, or build the future of AI, this collection is an indispensable resource for mastering the art and science of one of the most exciting fields in technology. Embrace the AI revolution and secure your copy of the AI Mastery Trilogy today! |
essential math for ai: Machine Learning and Artificial Intelligence Ameet V Joshi, 2019-09-24 This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations. |
essential math for ai: No-Nonsense Algebra Fisher, 2018-08-17 I have tutored many, many people in Math through Calculus, and I have found that if you start off with the basics and take things one step at a time - anyone can learn complex Math topics. This book has literally hundreds of example problems ranging in all levels of complexity. Each problem is broken down into bite-sized-chunks so that no one gets lost. This book will take anyone with no prior exposure to Algebra and raise their scores significantly! |
essential math for ai: Essential Math Skills for Engineers Clayton R. Paul, 2011-09-20 Just the math skills you need to excel in the study or practice of engineering Good math skills are indispensable for all engineers regardless of their specialty, yet only a relatively small portion of the math that engineering students study in college mathematics courses is used on a frequent basis in the study or practice of engineering. That's why Essential Math Skills for Engineers focuses on only these few critically essential math skills that students need in order to advance in their engineering studies and excel in engineering practice. Essential Math Skills for Engineers features concise, easy-to-follow explanations that quickly bring readers up to speed on all the essential core math skills used in the daily study and practice of engineering. These fundamental and essential skills are logically grouped into categories that make them easy to learn while also promoting their long-term retention. Among the key areas covered are: Algebra, geometry, trigonometry, complex arithmetic, and differential and integral calculus Simultaneous, linear, algebraic equations Linear, constant-coefficient, ordinary differential equations Linear, constant-coefficient, difference equations Linear, constant-coefficient, partial differential equations Fourier series and Fourier transform Laplace transform Mathematics of vectors With the thorough understanding of essential math skills gained from this text, readers will have mastered a key component of the knowledge needed to become successful students of engineering. In addition, this text is highly recommended for practicing engineers who want to refresh their math skills in order to tackle problems in engineering with confidence. |
essential math for ai: Probabilistic Machine Learning Kevin P. Murphy, 2022-03-01 A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach. |
essential math for ai: Hands-On Mathematics for Deep Learning Jay Dawani, 2020-06-12 A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required. |
essential math for ai: Linear Algebra Done Right Sheldon Axler, 1997-07-18 This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text. |
essential math for ai: Advances in Mathematics for Industry 4.0 Mangey Ram, 2020-10-02 Advances in Mathematics for Industry 4.0 examines key tools, techniques, strategies, and methods in engineering applications. By covering the latest knowledge in technology for engineering design and manufacture, chapters provide systematic and comprehensive coverage of key drivers in rapid economic development. Written by leading industry experts, chapter authors explore managing big data in processing information and helping in decision-making, including mathematical and optimization techniques for dealing with large amounts of data in short periods. - Focuses on recent research in mathematics applications for Industry 4.0 - Provides insights on international and transnational scales - Identifies mathematics knowledge gaps for Industry 4.0 - Describes fruitful areas for further research in industrial mathematics, including forthcoming international studies and research |
essential math for ai: The First 100 Days of Your Book Joel Stafford, 2019-09-04 Today having an excellent book with an great idea isn't enough for success. Over 2,000,000 books published every year, don't expect the crowd to pick up your book and say it is a masterwork even if it is. I swear you won't find any marketing bullshit in this book: No social media is the king crap No just order a gold marketing package and problem is solved No do a giveaway or kindle free promotion and everybody will buy your book I collected all the working marketing steps for those who want to make an impact with their books. You won't find any of the words strategy or planning in this book. I'm a practical guy and so I try to keep the bullshit and time-wasting things away from you, but I deeply believe that there are methods that should be shared with the new authors who have limited resources to do marketing. I'm focusing mainly on KDP authors, since it is the best platform to publish indie books in 2019. You will find small steps (not time-consuming), and some bigger steps in this short book which will be effective in long term. I tried to keep these steps in a linear timeline as it may happen even in real life. I hope you will enjoy reading this book, and you will find some useful resources and unique tactics that will raise your book out from the crowd. |
essential math for ai: Machine Learning with Spark - Second Edition Rajdeep Dua, Manpreet Singh Ghotra, Nick Pentreath, 2016-10-31 Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2*Access public machine learning datasets and use Spark to load, process, clean, and transform data*Use Spark's machine learning library to implement programs by utilizing well-known machine learning models*Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models*Write Spark functions to evaluate the performance of your machine learning modelsIn DetailSpark ML is the machine learning module of Spark. It uses in-memory RDDs to process machine learning models faster for clustering, classification, and regression.This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML. |
essential math for ai: Geometry Richard W. Fisher, 2016-06 This book will provide students with all the essential geometry skills that they need. Students will receive all the necessary geometry instruction, that is necessary for success in high school geometry Topics include: * Geometry vocabulary *Points, lines and planes *Perimeter *Area *Volume *The Pythagorean theorem, and much more. |
essential math for ai: Essential Mathematics and Statistics for Science Dr. Graham Currell, Dr. Antony Dowman, 2005-10-21 Basic Mathematics and Statistics for Science is a low-level introduction to the essential techniques students need to understand. It assumes little prior knowledge, and adopts a gentle approach that leads through examples in the book and website. No other text provides this range of educational support for science students. The integration between book and website provides study options that would be impossible through a book alone, and allows students to study in ways that suit their own circumstances and preferences. The combination of book and website also provides ready-prepared material for lectures, tutorials and computer practicals. Tutors can use the material to develop a variety of coherent programme using different learning styles. The book develops the mathematics and statistics through examples and questions that reflect the scientific context, and has succeeded in being relevant to a range of undergraduate science programmes. |
essential math for ai: Machine Learning Paul Wilmott, 2019-05-20 Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics - K Nearest Neighbours; K Means Clustering; Naïve Bayes Classifier; Regression Methods; Support Vector Machines; Self-Organizing Maps; Decision Trees; Neural Networks; Reinforcement Learning |
essential math for ai: Pre-Algebra Concepts Richard W. Fisher, 2008 Illustrated workbook for learning, practicing, and mastering pre-algebra mathematics. |
essential math for ai: Principles and Applications of Quantum Computing Using Essential Math Daniel, A., Arvindhan, M., Bellam, Kiranmai, Krishnaraj, N., 2023-09-12 In the swiftly evolving realm of technology, the challenge of classical computing's constraints in handling intricate problems has become pronounced. While classical computers excel in many areas, they struggle with complex issues in cryptography, optimization, and molecular simulation. Addressing these escalating challenges requires a disruptive solution to push the boundaries of computation and innovation. Principles and Applications of Quantum Computing Using Essential Math, authored by A. Daniel, M. Arvindhan, Kiranmai Bellam, and N. Krishnaraj. This guide pioneers the transformative potential of quantum computing by seamlessly blending rigorous mathematics with quantum theory. It equips scholars, researchers, and aspiring technologists with insights to grasp and harness quantum computing's capabilities. By delving into quantum gates, algorithms, and error correction techniques, the book demystifies quantum computing, inviting exploration of quantum machine learning, cryptography, and the dynamic interplay between classical and quantum computing. As the quantum landscape expands, this book acts as a vital companion, navigating readers through the converging realms of industry, academia, and innovation. Principles and Applications of Quantum Computing Using Essential Math arrives as a timely answer to the limitations of classical computing, providing scholars with an essential roadmap to navigate the quantum technology landscape. With its clear explanations, practical applications, and forward-looking perspectives, this book serves as an indispensable tool for unraveling quantum computing's mysteries and driving innovation into uncharted domains. |
essential math for ai: Basic Math Skills Rescue, Part 1 Richard W Fisher, 2021-01-08 |
essential math for ai: The Hundred-page Machine Learning Book Andriy Burkov, 2019 Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue. |
essential math for ai: Mathematics for the Million Lancelot Thomas Hogben, 1951 |
essential math for ai: The Future Computed , 2018 |
essential math for ai: AI for Immunology Louis J. Catania, 2021-01-27 The bioscience of immunology has given us a better understanding of human health and disease. Artificial intelligence (AI) has elevated that understanding and its applications in immunology to new levels. Together, AI for immunology is an advancing horizon in health care, disease diagnosis, and prevention. From the simple cold to the most advanced autoimmune disorders and now pandemics, AI for immunology is unlocking the causes and cures. Key features: A highly accessible and wide-ranging short introduction to AI for immunology Includes a chapter on COVID-19 and pandemics Includes scientific and clinical considerations, as well as immune and autoimmune diseases |
Home | Essential Mod
How does Essential’s world hosting work? Essential uses industry leading peer-to-peer technology and the power of your PC’s hardware to empower you to host Minecraft worlds and …
Downloads - Essential Mod
Direct downloads of Essential for all compatible Minecraft versions and modloaders.
Wiki - Shaders - Essential Mod
This guide explains how to install shaders alongside Essential Mod, to enhance your game with stunning shaders.
Wiki - Manual Install - Essential Mod
Learn how to manually install Essential Mod and its required modloader for the vanilla Minecraft launcher.
Wiki - Play Together - Essential Mod
Joining friends in Minecraft is super easy with Essential Mod. Following these steps works on both Minecraft worlds and Minecraft servers. Learn about the different ways to join your friends on …
Wiki - Essential Installer | Essential Mod
Learn how to use the Essential Installer, the easiest way to install Essential Mod. Install to existing installations, or create a new one.
Wiki - OptiFine - Essential Mod
This guide explains how to install Optifine alongside Essential Mod, for an enhanced Minecraft experience.
Changelog - Essential Mod
May 8, 2025 · Fixed the Essential diamond being black in the player list with Iris installed; Fixed the player's hand still being visible when zooming in with Iris installed; Bug Fixes. Default …
Wiki - Account Manager - Essential Mod
Easily switch between multiple Minecraft accounts with Essential Mod’s account manager. This guide shows how to add, remove, and manage your accounts directly in-game.
Wiki - Essential Network Error | Essential Mod
Essential Mod can fail to authenticate your connection due to various reasons. The guides below help you fix common issues. Learn how to troubleshoot and resolve Essential Mod Network …
Home | Essential Mod
How does Essential’s world hosting work? Essential uses industry leading peer-to-peer technology and the power of your PC’s hardware to empower you to host Minecraft worlds and …
Downloads - Essential Mod
Direct downloads of Essential for all compatible Minecraft versions and modloaders.
Wiki - Shaders - Essential Mod
This guide explains how to install shaders alongside Essential Mod, to enhance your game with stunning shaders.
Wiki - Manual Install - Essential Mod
Learn how to manually install Essential Mod and its required modloader for the vanilla Minecraft launcher.
Wiki - Play Together - Essential Mod
Joining friends in Minecraft is super easy with Essential Mod. Following these steps works on both Minecraft worlds and Minecraft servers. Learn about the different ways to join your friends on …
Wiki - Essential Installer | Essential Mod
Learn how to use the Essential Installer, the easiest way to install Essential Mod. Install to existing installations, or create a new one.
Wiki - OptiFine - Essential Mod
This guide explains how to install Optifine alongside Essential Mod, for an enhanced Minecraft experience.
Changelog - Essential Mod
May 8, 2025 · Fixed the Essential diamond being black in the player list with Iris installed; Fixed the player's hand still being visible when zooming in with Iris installed; Bug Fixes. Default …
Wiki - Account Manager - Essential Mod
Easily switch between multiple Minecraft accounts with Essential Mod’s account manager. This guide shows how to add, remove, and manage your accounts directly in-game.
Wiki - Essential Network Error | Essential Mod
Essential Mod can fail to authenticate your connection due to various reasons. The guides below help you fix common issues. Learn how to troubleshoot and resolve Essential Mod Network …